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Chapter 1

Basic Concepts

Introduction

In this chapter we introduce limits and derivatives. These are basic concepts
of calculus. We provide some rules for their computations.

1.1 Real Numbers and Functions

We assume that the reader is familiar with the real numbers (denoted by R)
and the operations of addition and multiplication. A real number is either
positive, negative, or zero. This allows us to order the real numbers. If
x and y are real numbers, then x is larger than y (i.e., x > y) if x − y is
positive.

Until further notice, we will work with real valued functions in one real
variable. Their domains, the sets on which these functions are defined, are
subsets of the real numbers, and they take values in R. The range of a
function is a set in which the function takes values. The image of a function
f consists of all those points y in the range for which there exists an x in
the domain of f , such that f(x) = y.

We will make frequent use of the absolute value function.

|x| =


x if x > 0
−x if x < 0
0 if x = 0

The distance between two points a and b on the real line is |a − b|, and
{x ∈ R | |x − a| < ε} is the set of all real numbers whose distance from

1
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a is less than ε. Expressed as an interval this set is (a − ε, a + ε). For
computations with absolute values it is worth noting that, for any two real
numbers x and x

|x · y| = |x| · |y|, |x + y| ≤ |x|+ |y|, and ||x| − |y|| ≤ |x− y|.(1.1)

The first inequality is referred to as triangle inequality, and the last one is
a variation of it.

Every now and then we will allude to the completeness of the real line,
which means that every bounded subset of the real line has a least upper
bound. This property is crucial for calculus, but arguments using it are too
difficult for an introductory course on the subject.

1.2 Limits

Limits are a central tool in calculus and other areas of mathematics. We
discuss them in this section.

Definition 1.1. Let f be a function and L a real number. We say that

L = lim
x→a

f(x)(1.2)

if for all ε > 0 there exists a δ > 0, such that |f(x) − L| < ε whenever x is
in the domain of f and 0 < |x− a| < δ.

The equation in (1.2) reads as L is the limit of f(x) as x approaches
a. We also say that f(x) approaches or converges to L as x approaches a.
An intuitive interpretation is that the expected value of f(x) at x = a is L,
based on the values of f(x) for x near a.

In all but a few degenerate cases, limits are unique if they exist.

Proposition 1.2. Suppose that f(x) has a limit at x = a, then this limit is
unique, provided that the domain of the function f contains points arbitrarily
close to a.1 2

The latter assumption in the proposition is satisfied if the domain of f
contains an interval, and either a belongs to this interval or a is an end point

1Expressed in mathematical language this means, for all δ > 0 there is a point b in the
domain of f , such that 0 < |b − a| < δ.

2Some authors do not apply the concept of a limit at isolated points of the domain of
a function, points for which there are no other arbitrarily close points in the domain of
the function.
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of it. To avoid intricate language, we make this kind of an assumption for
the remainder of this section. Taking limits is compatible with the basic
algebraic operations in the following sense.

Proposition 1.3. Assume that the domains of the functions f(x) and g(x)
both contain an interval of the form (d, a) or (a, e) where d < a < e. Suppose
that

lim
x→a

f(x) = L and lim
x→a

g(x) = M.

and that c is a constant. Then

lim
x→a

(f + g)(x) = M + L

lim
x→a

cf(x) = cM

lim
x→a

(f · g)(x) = M · L
lim
x→a

(f/g)(x) = M/L provided that L 6= 0.

As a special case we obtain the following useful observation:

lim
x→c

f(x) = L if and only if lim
x→c

(f(x)− L) = 0.(1.3)

Proposition 1.4 (Pinching Theorem). Assume that the domains of the
functions f(x), g(x), and h(x) all contain an interval of the form (d, a) or
(a, e) where d < a < e and that f(x) ≤ h(x) ≤ g(x). If

lim
x→a

f(x) = L = lim
x→a

g(x),

then the limit of h(x) exists as x approaches a, and it is equal to L.

For many functions the computation of limits is no challenge.

Proposition 1.5. If f(x) is a polynomial, a rational function, or a trigono-
metric function and f(a) is defined, then

lim
x→a

f(x) = f(a).

The following limits are important in the calculations of some derivatives.

lim
x→0

cos x− 1
x

= 0, lim
x→0

sin x

x
= 1. and lim

x→a

xn − an

x− a
= nan−1.(1.4)

Hints: The first two limits follow easily from the estimates in Theo-
rem 1.7, discussed in the following subsection. The last assertion can be
proved using synthetic division, at least if n is an integer.
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1.2.1 Two important estimates

In preparation of the proof of Theorem 1.7 we show

Theorem 1.6. If h ∈ [−π/4, π/4], then

| sin h| ≤ |h| ≤ | tan h|.(1.5)

Proof. In Figure 1.1 you see part of the unit circle. For h ∈ [−π/4, π/4] we
set C = (cos h, sin h). Given two points X and Y in the plane, the distance
between them is denoted by XY . We denote by B̂C the length of the arc
(part of the unit circle) between B and C.

O A B

C

D

E

Figure 1.1: The unit circle

We find that | sin h| = AC ≤ |h| = B̂C because going from C straight
down to the x-axis is shorter than following the circle from C to the x-axis.

Secondly, to show that |h| = B̂C ≤ | tan h| = BD, imagine that you roll
the circle along the vertical line through B until the point C touches it in the
point E. We use the process of rolling the circle along the line to measure
|h|. In particular, |h| = BE. It appears to be clear3 that BE ≤ BD. This

3Here our argument relies on intuition. A rigorous argument requires work. One can
show that the area of a disk with radius one is π. From this is follows by elementary
geometry that the area of the slice of the disk with vertices O, B and C has area |h|/2.
This slice is contained in the triangle with vertices O, B and D, and the area of the slice
is (tan |h|)/2. It follows that |h| ≤ tan |h|.
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verifies that |h| ≤ tan |h|, the second inequality which we claimed in the
theorem.

Theorem 1.7. If h ∈ [−π/4, π/4], then4

|1− cos h| ≤ h2

2
and |h− sin h| ≤ h2

2
.(1.6)

Proof of Theorem 1.7. In Figure 1.2 you see half of a circle of radius 1
centered at the origin, and a triangle with vertices A, B, and C. Let
h ∈ [−π/4, π/4] be the number for which we want to show the inequal-
ity and C = (cos h, sin h). Denote by XY the length of the straight line
segment between the points X and Y . Let B̂C be the length of the arc
(part of the unit circle) between B and C.

A B

C

D

Figure 1.2: The unit circle

From the picture we read off that

AB = 2, DB = (1− cos h), B̂C = |h|, and BC ≤ B̂C.

Using similar triangles we see AB/BC = BC/DB and (BC)2 = AB×DB.
In other words

2(1− cos h) = AB ×DB = (BC)2 ≤ (B̂C)2 = h2.
4The inequalities hold without the restriction on h, but we only need them on an

interval around zero. Restricting ourselves to this interval simplifies the proofs somewhat.
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The first estimate in (1.6) is an immediate consequence.
If h = 0, then both sides of the second inequality in (1.6) are zero,

verifying the assertion in this case. If 0 6= h ∈ [−π/4, π/4], then Theorem 1.6
tells us that

| sin h| ≤ |h| ≤ | tan h| = | sin h|
cos h

hence 0 ≤ cos h ≤ sin h

h
≤ 1.

Subtracting the terms in this inequality from 1 we find

0 ≤ 1− sin h

h
≤ 1− cos h ≤ 1.

Using our previous estimate for |1 − cos h| and our assumption that |h| ≤
π/4 < 1, we conclude that∣∣∣∣h− sin h

h

∣∣∣∣ ≤ |1− cos h| ≤ h2

2
≤ h

2
.

The second estimate claimed in the theorem is an immediate consequence.

1.3 More Limits

The material in the previous, first section about limits suffices for a while.
In some situations one would like to modify the definition in Section 1.2,
and we do so in this section. The first two limits express how the function
behaves as we approach a point a from the right or left. They are called the
right and left hand limits. The next two limits express what happens as the
variable tends to plus or minus infinity. We call them limits at infinity. The
last two limits allow us to express that the values of a function tend to plus
or minus infinity. We call them infinite limits.

Definition 1.8. Let f be a function and L a real number. We say that

L = lim
x→a+

f(x)

if for all ε > 0 there exists a δ > 0, such that |f(x) − L| < ε whenever x is
in the domain of f and a < x < a + δ.

Definition 1.9. Let f be a function and L a real number. We say that

L = lim
x→a−

f(x)

if for all ε > 0 there exists a δ > 0, such that |f(x) − L| < ε whenever x is
in the domain of f and a− δ < x < a.
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For example, if f(x) = sign(x) = x/|x|, then

lim
x→a+

f(x) = 1 and lim
x→a−

f(x) = −1.

We can consider what happens to the values of a function f(x) as x
approaches ∞ or −∞.

Definition 1.10. Let f be a function and L a real number. We say that

L = lim
x→∞ f(x)

if for all ε > 0 there exists a number M , such that |f(x)− L| < ε whenever
x is in the domain of f and x > M .

Definition 1.11. Let f be a function and L a real number. We say that

L = lim
x→−∞ f(x)

if for all ε > 0 there exists a number M , such that |f(x)− L| < ε whenever
x is in the domain of f and x < M .

For example

lim
x→∞

1
x

= 0 and lim
x→−∞

1
1 + x2

= 1.

Definition 1.12. Let f be a function and a a real number. We say that

lim
x→a

f(x) = ∞

if for all M there exists a δ > 0 such that f(x) > M whenever x is in the
domain of f and 0 < |a− x| < δ.

In other words, we can make sure that the value of f(x) is larger than
any given number M , no matter how large, by taking x close to a.

Definition 1.13. Let f be a function and a a real number. We say that

lim
x→a

f(x) = −∞

if for all M there exists a δ > 0 such that f(x) < M whenever x is in the
domain of f and 0 < |a− x| < δ.

In the last two definitions a may be replaced by a±, so that we approach
a from the left or right, and a can be replaced by ±∞.

For example

lim
x→0+

1
x

= ∞ and lim
x→∞

√
x = ∞.
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1.4 Continuous Functions

We define continuous functions and discuss a few of their basic properties.
The class of continuous functions will play a central role later.

Definition 1.14. Let f be a function and c a point in its domain. The
function is said to be continuous at c if for all ε > 0 there exists a δ > 0,
such that |f(c) − f(x)| < ε whenever x belongs to the domain of f and
|x− c| < δ. A function f is continuous if it is continuous at all points in its
domain.

In most cases the condition in Definition 1.14 says that

lim
x→c

f(x) = f(c).(1.7)

In fact, this equation holds whenever there are points in the domain of f
arbitrarily close to c. See the footnote to Proposition 1.2. If c is an isolated
point in the domain of f , i.e., there are no other points in the domain of f
arbitrarily close to c, then the function is always continuous at c.

Polynomials, rational functions, and trigonometric functions are contin-
uous. One can produce many more continuous functions through standard
operations on functions.

Proposition 1.15. Let f and g be continuous functions. Then f + g, f · g,
f/g and f ◦ g are continuous, wherever these functions are defined.

The clarify the remark about the domain in the proposition, we note that
the function (f + g)(x) = f(x)+ g(x) is defined for those x for which both f
and g are defined. The same statement holds for (f · g)(x) = f(x) · g(x). To
determine the domain of f/g one needs to exclude those points where g is
zero. For the composition (f ◦ g)(x) = f(g(x)) on needs that g takes values
in the domain of f .

One may also reverse the order of applying a continuous function and
calculating a limit:

lim
x→c

f(g(x)) = f
(

lim
x→c

g(x)
)

,(1.8)

provided the natural technical assumption hold, i.e., g is defined at points
arbitrarily close to c, f is defined for all g(x) where x is in the domain of g
and close to c, and f is continuous at limx→c g(x).

Theorem 1.16 (Intermediate Value Theorem). Suppose that f is de-
fined and continuous on the closed interval [a, b]. If C is in between f(a)
and f(b), then there exists a c ∈ [a, b], such that f(c) = 0.
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E.g., suppose that p(x) = x3 − x2 + 2x− 1. The polynomial is certainly
a continuous function, p(0) = −1 and p(1) = 1. According to the theorem
there exists some c ∈ (0, 1), such that p(c) = 0.

Theorem 1.17 (Extreme Value Theorem). Let f be defined and con-
tinuous on the closed interval [a, b]. Then there exist points c and d in [a, b],
such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Expressed in words, the theorem says that a continuous function on a
closed interval assumes a smallest and largest value.

The Intermediate Value and Extreme Value theorem are typically proved
in an introductory analysis course. They are equivalent to the completeness
of the real line. We mentioned this property of the real numbers in Sec-
tion 1.1.

1.5 Lines

In general, a line consists of the points (x, y) in the plane which satisfy the
equation

ax + by = c(1.9)

for some given real numbers a, b and c, where it is assumed that a and b
are not both zero. The line is vertical if and only if b = 0. If b 6= 0 we may
rewrite the equation as

y = −a

b
x +

c

b
= mx + B.(1.10)

The number m is called the slope of the line, and B is the point in which the
line intersects the y-axis, also called the y-intercept. Given any two points
(x1, y1) and (x2, y2) in the plane, the line through them has slope

m =
y2 − y1

x2 − x1
.

For our purposes, the most useful version of the equation of a line is its
point-slope formula. The equation of a line with slope m through the point
(x1, y1) is

y = m(x− x1) + y1.(1.11)
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1.6 Tangent Lines and the Derivative

We like to introduce the concept of tangent lines. To be able to express
ourselves concisely, let us say

Definition 1.18. A point c is an interior point of a subset B of R if there
is an open interval I, such that c ∈ I ⊆ B.

We give a first definition for a tangent line.

Definition 1.19. Suppose f(x) is a function and c is an interior point of
its domain. We call a line t(x) the tangent line to the graph of f(x) at x = c
if t(x) is the best linear approximation of f(x) on some open interval around
c, i.e., the line t(x) is closer to the graph of f(x) than any other line for all
x in some open interval around c.

For a given function and an interior point c in its domain there may or
may not be a tangent line, but it there is a tangent line, then it is unique.

Although the term ‘best linear approximation near c’ gives an excellent
intuitive picture what a tangent line is, this definition is hard to work with.
It is easier to work with a more concrete definition.

Definition 1.20. Suppose f(x) is a function and c is an interior point of
its domain. We call a line t(x) the tangent line to the graph of f(x) at x = c
if

lim
x→c

f(x)− t(x)
x− c

= 0.(1.12)

The equation in (1.12) expresses in a precise form in which sense the
tangent line is close to the graph of f(x) near c. Not only does f(x)− t(x)
converge to zero as x approaches c, it does so even when divided by x− c.

We use tangent lines to define the concept of differentiability and the
derivative.

Definition 1.21. Suppose f(x) is a function and c is an interior point of
its domain, and assume that there is a tangent line to the graph of f(x) at
x = c. Then we say that f(x) is differentiable at c. We call the slope of the
tangent line the derivative of f(x) at c, and we denote it by f ′(c).

Utilizing the notation in the previous definition we can write down the
equation of the tangent line to the graph of f(x) at x = c in point-slope
form:

t(x) = f ′(c)(x− c) + f(c).(1.13)
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To differentiate a function means to find its derivative.
By definition, an open set is a set, such that each of its points is an

interior point.

Definition 1.22. Suppose the domain of the function f(x) is an open set.
Then say that f(x) is differentiable if it is differentiable at each point of
its domain. We consider f ′(x) as a function, whose domain consists of all
those points where f(x) is differentiable.

Example 1.23. Let p(x) = 2x4−3x2 +5. Find the tangent line t(x) to the
graph of p(x) at x = −2 and p′(−2).

Solution: As a first step we expand p in powers of u = (x + 2). To do
so, we substitute u− 2 for x and expand p in powers of u. You are expected
to fill in some of the arithmetic steps.

p = 2(u− 2)4 − 3(u− 2)2 + 5
= 2(u4 − 8u3 + 24u2 − 32u + 16)− 3(u2 − 4u + 4) + 5
= 2u4 − 16u3 + 45u2 − 52u + 25

Reversing the substitution, replacing u by (x + 2), we find:

p(x) = 2(x + 2)4 − 16(x + 2)3 + 45(x + 2)2 − 52(x + 2) + 25.

We assert that t(x) = −52(x + 2) + 25 and p′(−2) = −52.
For t(x) as proposed, we see that∣∣∣∣p(x)− t(x)

x− c

∣∣∣∣ =
∣∣∣∣p(x)− t(x)

x + 2

∣∣∣∣
= |2(x + 2)3 − 16(x + 2)2 + 45(x + 2)|
≤ 65|x + 2| (provided |x + 2| ≤ 1)

This estimate shows that (p(x) − t(x))/(x − c) converges to zero as x ap-
proaches c = −2. By definition, this means that t(x) is the desired tangent
line. Its slope is p′(−2) = −52. ♦

The example is generic. We can use any polynomial p(x) and point x = c
and write p(x) in powers of (x− c). Say, the result is

p(x) = An(x− c)n + · · ·+ A1(x− c) + A0.

The technique used in the example, suitably generalized, shows that

t(x) = A1(x− c) + A0



12 CHAPTER 1. BASIC CONCEPTS

is the tangent line to the graph of p(x) at x = c, and p′(c) = A1. Eventually
we will find a more efficient method for differentiating polynomials, but we
have shown that

Proposition 1.24. Polynomials are differentiable.

1.6.1 Derivatives without Limits

Without a doubt, the definition of a limit is the most difficult one in a
first semester of calculus, and it is interesting to explore ways to develop
calculus, rigorously, without the limit concept. One can do this by replacing
the condition in (1.12) by a slightly stronger one.

Definition 1.25. Suppose f(x) is a function and c is an interior point of
its domain. We call a line t(x) the tangent line to the graph of f(x) at x = c
if there exists and open interval I around c and a number A, such that

|f(x)− t(x)| ≤ A(x− c)2(1.14)

for all x ∈ I.

With this definition fewer functions will be differentiable than with the
one given in Definition 1.20, but this is not crucial.

The inequality in (1.14) can be rewritten as

q(x) = t(x)−A(x− c)2 ≤ f(x) ≤ t(x) + A(x− c)2 = p(x),

where the parabolas q(x) and p(x) are defined by the expressions they are
adjacent to. All four function f(x), q(x), p(x), and t(x) have the same value
at x = c. In an example, this situation is shown in Figure 1.3. There you
see the function f(x) = sin x, the parabola p(x) (dotted and open upwards),
the parabola q(x) (dotted and open downwards), and the tangent line t(x)
(dashed). The parabolas p(x) and q(x) touch each other without crossing,
and the picture shows how they ‘hug’ each other. There is very little space
left between p(x) and q(x), and f(x) and t(x) are squeezed in between them.
In this sense, the graphs of f(x) and t(x) have to be close to each other near
x = c.

A pedagogical advantage of the approach is that one does not have to
understand limits before one can understand the definition of the derivative.
There is also a geometric picture which illustrates the concept of closeness,
tangent line, and derivative. The condition in (1.14) is also more accessible
to computer assisted algebra than the limit definition. In terms of algebraic
geometry (1.14) at least alludes to a divisibility condition.
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Figure 1.3: Sine Function and Tangent Line between two Parabolas

1.7 Secant Lines and the Derivative

Often a different approach is taken to motivate and introduce the derivative.

Theorem 1.26. Suppose f is a function and c is an interior point of its
domain. If f is differentiable at c, then

f ′(c) = lim
x→c

f(c)− f(x)
c− x

.

Proof. This is obvious once one uses the expression for the tangent line in
(1.13) and substitutes it in the expression in (1.12) inside the limit.

f(x)− t(x)
x− c

=
f(x)− f(c)

x− c
− f ′(c).(1.15)

Apply limits to both sides of the equation and the assertion follows.

Let us explain the situation geometrically. Suppose a and b are distinct
points in the domain of the function f . The line through (a, f(a)) and
(b, f(b)) is called a secant line, and its slope (f(a) − f(b))/(a − b) is called
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the average rate of change of f over the interval [a, b]. In (1.15) we are
considering the slopes of secant lines through (c, (f(c)) and (x, f(x)), and
then we take the limit as x approaches c. The theorem asserts that for a
differentiable function this limit of the slopes of secant lines is the slope of
the tangent line. For the obvious reason f ′(c) is called the rate of change or
instantaneous rate of change of f at c.

Many authors introduce the derivative as the limit of the slopes of secant
lines, call t(x) = f ′(x − c) + f(c) the tangent line, and possibly illustrate
that the tangent line is close to the graph in the sense of Definition 1.20.
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-0.0025

0.0025
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0.0075

Figure 1.4: f(x) = x2 sin(1/x)
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Figure 1.5: f(x) = x2 sin(1/x)

It is misleading to say that the graph of f(x) looks like, or resembles, a
line near c. Eventually you will be able to show that the function

f(x) =

{
x2 sin(1/x) if x 6= 0
0 if x = 0

is differentiable everywhere on the real line. You see part of its graph over
two different intervals in Figure 1.4 and 1.5. By no stretch of imagination
will you say that the graph of the function looks like a line.

1.8 Differentiability implies Continuity

It is worth pointing out that

Theorem 1.27. If a function is differentiable at a point, then it is contin-
uous at this point.
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Proof. Denote the function by f(x) and the point of differentiability by c.
By assumption we have the derivative f ′(c) and

lim
x→c

[
f(x)− f(c)

x− c
− f ′(c)

]
= 0.

Then certainly

lim
x→c

[(f(x)− f(c))− f ′(c)(x − c)] = 0.

Because f ′(c)(x−c) converges to zero as x approaches c, so does (f(x)−f(c)).
This implies that limx→c f(x) = f(c) and that f(x) is continuous at c.

-2 -1 1 2

0.5

1

1.5

2

Figure 1.6: The absolute value function

The converse of the theorem is false. There are continuous functions
which are not differentiable. E.g., the function f(x) = |x| is continuous,
but it is not differentiable at x = 0. It is apparent from the graph (see
Figure 1.6) that there is not line close to the graph of this function near
x = 0.

We can also give an analytic argument. According to the definition of
differentiability, we have to study the difference quotients (|x|−|0|)/(x−0) =
|x|/x. They are 1 if x > 0 and −1 if x < 0. There is no number these
difference quotients converge to, and f(x) = |x| is not differentiable at x = 0.

1.9 Basic Examples of Derivatives

Let us use the definitions and work out a few derivatives.
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Example 1.28. If f(x) = xn and n is a non-negative integer, i.e., n = 0,
1, 2, . . . , then f ′(x) = nxn−1.

Proof. Suppose that n ≥ 2. Then

lim
x→c

xn − cn

x− c
= lim

x→c
(xn−1 + xn−2c + · · · xcn−2 + cn−1) = ncn−1

The cases n = 0 and n = 1 are even easier and left to the reader.

Example 1.29. If f(x) = 1/x, then f ′(x) = −1/x2.

Proof. Suppose c 6= 0.

lim
x→c

1
x − 1

c

x− c
= lim

x→c

c− x

xc(x− c)
= − 1

c2
.

Example 1.30. If f(x) =
√

x and x > 0, then f ′(x) = 1/(2
√

x).

Proof.

lim
x→c

√
x−√c

x− c
= lim

x→c

x− c

(x− c)(
√

x +
√

c)
=

1
2
√

c
.

Remark 1. Eventually we will see that if f(x) = xa for any real number
a, then f ′(x) = axa−1, generalizing all of the examples above.

Exercise 1. Suppose that f(x) =
√

ax + b and ax + b > 0. Show that

f ′(x) =
a

2
√

ax + b
.

The tangent line to the graph of f(x) at x = c is then

t(x) =
a

2
√

ac + b
(x− c) +

√
ac + b.

Verify that

|f(x)− t(x)| ≤ a2

2(
√

ac + b)3
(x− c)2.(1.16)
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The estimate in (1.16) shows differentiability in the sense of Defini-
tion 1.25, and provides an explicit error estimate, a bound on the difference
between the function and its tangent line.

Example 1.31. Show that sin′ x = cos x. For this equation to hold, the
angle x needs to be measured in radians.

Proof. Below we will set x = c + h and x− c = h.

lim
x→c

[
sin x− sin c

x− c

]
= lim

h→0

[
sin(c + h)− sin c

h

]
= lim

h→0

[
sin c cos h + cos c sin h− sin c

h

]
= lim

h→0

[
sin c(cos h− 1) + cos c sin h

h

]
= sin c · lim

h→0

cos h− 1
h

+ cos c · lim
h→0

sin h

h
= cos c.

For computation of the limits in the second to last line see (1.4).

The tangent line to the graph of the sine function at x = c is

t(x) = cos c(x− c) + sin c.

It is left as an exercise for the reader to show that

| sin x− t(x)| ≤ (x− c)2(1.17)

The steps are essentially the same as in the proof above. The estimate in
(1.17) does not only show differentiability in the sense of Definition 1.25,
but it provides an explicit error estimate, a bound on the difference between
the function and its tangent line.

Exercise 2. If f(x) = cos x, then f ′(x) = − sin x. The details are similar
to the ones in Example 1.31. Furthermore, if

t(x) = sin c(x− c) + cos x

is the tangent line to the graph of f(x) at x = c, then

|f(x)− t(x)| ≤ (x− c)2.
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1.10 The Exponential and Logarithm Functions

The exponential and logarithm are of great importance and we do not want
to delay their introduction any further. Still, technically we are not quite
prepared for it and at a later point we have to revisit the introduction to fill
in details.

Suppose a is a positive real number and a 6= 1. For any rational number
r = p/q (p and q are integers) one can define ar = q

√
ap. First we take a p-th

power and then a q-root. In this sense we have a function h(r) = ar, whose
domain consists of all rational numbers. This function is monotonic. More
precisely, h(r) is increasing if a > 1 and decreasing when 0 < a < 1.

Theorem-Definition 1.32. Let a be a positive number, a 6= 1. There
exists exactly one monotonic function, called the exponential function with
base a and denoted by expa(x), which is defined for all real numbers x such
that expa(x) = ax whenever x is a rational number. Furthermore, ax > 0 for
all x, so that the domain of the exponential function is (−∞,∞). For every
number y > 0 there exists exactly one number x, such that expa(x) = y, so
we use (0,∞) as the range of the exponential function expa(x).

It is common, and we will follow this convention, to use the notation
ax for expa(x) also if x is not rational. The arithmetic properties of the
exponential function, also called the exponential laws, are collected in our
next theorem. The theorem just says that the exponential laws, which you
previously learned for rational exponents, also hold in the generality of our
current discussion.

Theorem 1.33 (Exponential Laws). For any positive real number a and
all real numbers x and y

axay = ax+y

ax/ay = ax−y

(ax)y = axy

If x is the unique solution of the equation ax = y, then we set

loga(y) = x.(1.18)

We just defined a function loga(y). It is called the logarithm function with
base a, and by construction it is the inverse of the exponential function
expa(x). More explicitly,

aloga y = y and loga(a
x) = x
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for all x ∈ R and all y > 0. The domain of the logarithm function is
(0,∞) and its range is (−∞,∞). It is increasing if a > 1 and decreasing if
0 < a < 1.

Corresponding to the exponential laws in Theorem 1.33 we have the laws
of logarithms. One set of laws implies the other one, and vice versa.

Theorem 1.34 (Laws of Logarithms). For any positive real number a 6=
1, for all positive real numbers x and y, and any real number z

loga(xy) = loga(x) + loga(y)
loga(x/y) = loga(x)− loga(y)
loga(x

z) = z loga(x)

In Figures 1.7 and 1.8 you see parts of the graphs of the exponential and
logarithm functions with base 2.
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Figure 1.7: exp2(x)
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Figure 1.8: log2(x)

The Euler number e as base

There is one number which is preferrable as base over the others. This
irrational number is called the Euler number (named after Leonard Euler)
and denoted by e, and e ≈ 2.718281828. We will define it precisely later.

Definition 1.35. The exponential function is the exponential function for
the base e. It is denoted by exp(x) or ex. Its inverse is the natural logarithm
function. It is denoted by ln(x). So exp(x) = expe(x) and ln(x) = loge(x).
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Eventually we will see

exp′(x) = exp(x) and ln′(x) =
1
x

.(1.19)

The derivative of the exponential function is the exponential function, and
the derivative of the natural logarithm function is 1/x.

Other Bases

Finally, let us relate the exponential and logarithm functions for different
bases to those with base e. For any positive number a (a 6= 1),

Theorem 1.36.

ax = ex lna and loga x =
ln x

ln a
.

These identities follow from the exponential laws and the laws of loga-
rithms.

1.11 Differentiability on Closed Intervals

In Definition 1.22 we defined what it means that a function is differentiable
on an open set. There are situations in which one would like to apply the
notion of differentiability to functions with other kinds of domains. Let us
formalize the idea of extending functions.

Definition 1.37. Suppose that I and J are subsets of the real line R and
I ⊆ J , that I is the domain of a function f , and that J is the domain of
a function F . We call F an extention of f if it agrees with f on I, i.e.,
F (x) = f(x) for all x ∈ I.

Definition 1.38. A function f is said to be differentiable on a subset I
of R if it extends to a differentiable function F on an open set. We set
f ′(x) = F ′(x) for all x ∈ I.

Without some restrictions on I, a function may be differentiable without
the derivative being well defined. The least technical and for our purposes
sufficient solution is captured in

Proposition 1.39. Suppose the function f is defined on an interval I, the
interval is neither empty nor a single point, and f extends to a differentiable
function F on an open interval containing I, then f ′(x) = F ′(x) is unique
for all x ∈ I.
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We are mostly concerned with defining differentiability for functions
whose domain is a closed interval [a, b], where a < b. Some authors use
one-sided limits and one-sided derivatives to contemplate derivatives at the
end points of the interval. Our discussion is less painful, and it lends itself
more to generalizations in higher dimensions.

Let us discuss two examples. The function f(x) = x2 with domain [0, 1]
is differentiable. It extends to the differentiable function F (x) = x2 with
the open set (−∞,∞) as its domain. In contrast, the function g(x) =

√
x

is not differentiable on the interval [0,∞). The only sensible candidate for
the tangent line to the graph of g(x) at the point (0, 0) is a vertical line.
The slope of this line is not a real number and we do not have a derivative.
(The function g(x) is differentiable if we use (0,∞) as domain.)

1.12 Other Notations for the Derivative

There are different notations for the derivative of a function. Physicists will
indicate a derivative with respect to time by a dot. E.g., if x is a function
of time, then they will write ẋ(t) instead of x′(t). Leibnitz’ notation for the
derivative of a function f of a variable x is df

dx . We will use it frequently. Ex-
pressing the derivatives of the exponential and natural logarithm functions
this way (see (1.19)) we have:

If y(x) = ex, then
dy

dx
= y = ex, and if y(x) = ln x, then

dy

dx
=

1
x

.

This notation is not always specific enough. The expression dy/dx stands
for the derivative of y with respect to x, and that is a function. The ex-
pression does not tell where dy/dx is evaluated. To be specific about this
aspect, it makes sense to write (compare Example 1.31):

If y(x) = sinx, then
dy

dx
(x) = cos x.

In this notation x plays two roles. It is the name of the variable of y as
well as the name of the variable of the derivative of y. This in acceptable
because it won’t lead to confusion. Instead of df

dx(x) we also write d
dxf(x).

This is particularly convenient if f stands for a larger expression as in

d

dx
sin x = cos x or

d

dx
ex = ex.
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1.13 Rules of Differentiation

We discuss formulas for calculating the derivative of a composite function
from the derivatives of its constituents. These formulas, together with the
knowledge of the derivatives of some basic functions, turn the process of
differentiation for many functions into an algorithm, a rather mechanical
process. You can do it even on the computer, which means that no “under-
standing” is required. You are expected to learn the basic rules, be able to
apply the accurately, and practice many examples. In the last section of this
chapter we summarize the computational results of this section. We collect
the rules established in this section and tabulate the derivatives of many of
the important functions which we considered.

1.13.1 Linearity of the Derivative

Differentiation is compatible with addition of functions and multiplication
with a constant. In a more mathematical language one says that differen-
tiation is linear. Let f and g be functions, and assume that both of them
are differentiable at x. Let c be a real number. Then f + g and cf are
differentiable at x and their derivatives are given by

(f + g)′(x) = f ′(x) + g′(x) and (cf)′(x) = cf ′(x).(1.20)

In Leibnitz’ notation this reads

d

dx
(f + g)(x) =

df

dx
(x) +

dg

dx
(x) and

d

dx
(cf)(x) = c

df

dx
(x).(1.21)

In words, the derivative of a sum of functions is the sum of the derivatives,
and the derivative of a multiple of a function is the multiple of the derivative.

Example 1.40. Differentiate

h(x) = x2 + 3ex.

Solution: Set f(x) = x2, g(x) = ex and c = 3. Then h(x) = f(x) + 3g(x).
Previously we found that f ′(x) = 2x and that g′(x) = ex, see (1.19). We
conclude that

h′(x) =
dh

dx
(x) = 2x + 3ex. ♦



1.13. RULES OF DIFFERENTIATION 23

Example 1.41. Differentiate loga x, the logarithm functions for an arbi-
trary positive base a, a 6= 1.

Solution: Recall that loga x = ln x
ln a , see Theorem 1.36. In this sense

loga x = cf(x) where c = 1/ ln a and f(x) = ln x. We stated previously that
ln′ x = 1/x, see (1.19). Using the linearity of the derivative, we find

log′a x =
d

dx

(
ln x

ln a

)
=

1
ln a

ln′ x =
1

ln a
× 1

x
=

1
x ln a

. ♦

Suppose f and g are defined and differentiable on an set. Thinking of f
and g more as functions, and not so much as functions evaluated at a point,
we may omit (x) from the notation. Then the differentiation rules are

(f + g)′ = f ′ + g′ or
d

dx
(f + g) =

df

dx
+

dg

dx
(1.22)

and

(cf)′ = cf ′ or
d

dx
(cf) = c

df

dx
.(1.23)

Example 1.42. Find the derivative of an arbitrary polynomial.
Solution: A polynomial is a finite sum of multiples of non-negative

powers of the variable, i.e., a function of the form

f(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

where the ai are constants. Using Example 1.28 and the linearity of the
derivative we see right away that

f ′(x) = nanxn−1 + (n− 1)an−1x
n−2 + · · · + a1.

Here is a specific example, a special case of the formula which we just
derived.

If f(x) = 4x5 − 3x2 + 4x + 5, then f ′(x) = 20x4 − 6x + 4. ♦

1.13.2 Product and Quotient Rules

Next we state the product and the quotient rule. They allow us to calculate
the derivatives of products and quotients of functions. Again, let f and g
be functions, and assume that both of them are differentiable at x. For the
quotient rule assume in addition that g(x) 6= 0. Then the product fg and
the quotient f/g are differentiable at x and their derivatives are given by
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(fg)′(x) = f ′(x)g(x) + f(x)g′(x)(1.24)

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
[g(x)]2

.(1.25)

In Leibnitz’ notation these formulas become

d

dx
(fg)(x) =

df

dx
(x)g(x) + f(x)

dg

dx
(x)(1.26)

d

dx

(
f

g

)
(x) =

df
dx(x)g(x) − f(x) dg

dx(x)
[g(x)]2

.(1.27)

Example 1.43. Differentiate the function h(x) = x2 ln x.
Solution: Write h(x) = f(x)g(x) with f(x) = x2 and g(x) = ln x.

Then f ′(x) = 2x and g′(x) = 1/x, see (1.19). Putting this into the product
formula yields

h′(x) = f ′(x)g(x) + f(x)g′(x) = 2x ln x + x2 1
x

= x(2 ln x + 1). ♦

Example 1.44. Find the derivative of the rational function.

r(x) =
x2 − 5
x3 + 1

.

Solution: We set p(x) = x2 − 5 and q(x) = x3 + 2. Then p′(x) = 2x
and q′(x) = 3x2. According to the quotient rule

r′(x) =
2x(x3 + 1)− (x2 − 5)3x2

(x3 + 1)2
=
−x4 + 15x2 + 2x

(x3 + 1)2
. ♦

Example 1.45. The formula

d

dx
xn = nxn−1

for all integer powers n. If n ≤ −1, then we domain of the function is R\{0},
the real line with the origin removed.

Solution: We verified this formula for n ≥ 0 in Example 1.28. Let n be
a negative integer and m = −n. Then

d

dx
xn =

d

dx

[
1

xm

]
=

0 · xm − 1 ·mxm−1

x2m
=

−m

xm+1
= nxn−1.
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Example 1.46. Find the derivative of

f(x) = tan x.

Solution: We express f(x) as a quotient of two functions, f(x) =
sin x/ cos x, and apply the quotient rule. Use that sin′ x = cos x (see Exam-
ple 1.31) and cos′ x = − sinx (see Exercise 2 on page 17). We find

tan′ x =
sin′ x cos x− sin x cos′ x

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1
cos2 x

= sec2 x.

(1.28)

Some books and computer programs will give this result in a different form.
Based on the relevant trigonometric identity, they write

tan′ x = 1 + tan2 x.(1.29)

That draws our attention to the fact that the function f(x) = tan x satisfies
the differential equation

f ′(x) = 1 + f2(x). ♦
Example 1.47. Differentiate the function

f(x) = sec x.

Solution: We write the function as a quotient: f(x) = 1/ cos x. The
function is defined for all x for which cos x 6= 0, i.e., for x not of the form
nπ + 1/2, where n is an integer. We apply the quotient rule, using that
cos′ x = − sin x (see Exercise 2 on page 17), and that the derivative of a
constant vanishes. We find

sec′ x =
sin x

cos2 x
=

sin x

cos x
· 1
cos x

= tan x sec x. ♦(1.30)

Suppose f and g are defined and differentiable on an open set. Thinking
of f and g again more as functions, and not so much as functions evaluated
at a point, we may once more omit (x) from the notation. Then the product
rule and quotient rule become

(fg)′ = f ′g + fg′ or
d

dx
(fg) =

df

dx
g + f

dg

dx
(1.31)

and, wherever g(x) 6= 0,(
f

g

)′
=

f ′g − fg′

g2
or

d

dx

(
f

g

)
=

df
dxg − f dg

dx

g2
.(1.32)

Here g2 is the square of the function g, given by g2(x) = [g(x)]2.
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1.13.3 Chain Rule

Let f and g be functions, and suppose that the domain of f contains the
range of g, so that the composition (f ◦ g)(x) = f(g(x)) is defined for all x
in the domain of g. Set h = f ◦ g, so that h(x) = f(g(x)). The chain rule
says that whenever g is differentiable at x and f is differentiable at g(x),
then h(x) is differentiable at x and

h′(x) = (f ◦ g)′(x) = f ′(g(x))g′(x).(1.33)

In Leibnitz’ notation the chain rule says that

dh

dx
(x) =

d

dx
f(g(x)) =

df

du
(g(x))

dg

dx
(x).(1.34)

Example 1.48. Differentiate the function

h(x) = ex2+1.

Solution: We write h = f ◦ g as a composition of two functions, with
g(x) = x2 + 1 and f(u) = eu. Remember that f ′(u) = f(u) = eu and
g′(x) = 2x. In particular, f ′(g(x)) = ex2+1. The chain rule tells us that

h′(x) = f ′(g(x))g′(x) = 2xex2+1.

In the last expression we reversed the order of the factors to make the
expression more readable. ♦

Example 1.49. Let u(x) be a differentiable function.

If f(x) = eu(x) then f ′(x) = u′(x)eu(x).

Here are some specific examples:

d

dx
e2x+5 = 2 e2x+5

d

dx
esin x = cos x esin x

d

dx
etan x = sec2 x etan x. ♦

Example 1.50. Combining Example 1.45 with the chain rule we find

d

dx
un(x) = nu′(x)un−1(x)
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for all integers n, assuming only that u is differentiable at x and u(x) 6= 0 if
n ≤ −1.

Solution: Set g(x) = u(x) and f(u) = un. Then

h(x) = f(g(x)) = un(x).

According to Example 1.45, f ′(u) = nun−1. The chain rule tells us now that

h′(x) = f ′(g(x))g′(x) = n(g(x))n−1g′(x) = nu′(x)un−1(x).

We reordered the expressions so that the expression is more readable.
To be specific, here are concrete examples:

d

dx
(3x + 5)8 = 8(3x + 5)8−1 · 3 = 24(3x + 5)7

d

dx
(x2 + 1)25 = 25(x2 + 1)24 · 2x = 50x(x2 + 1)24

d

dx
tan3 x = 3 sec2 x tan2 x

d

dx
cos2 x = 2cos x(− sin x) = −2 cos x sin x

d

dx
sec5 x = 5 sec4 x sec x tan x = 5 sec5 x tan x. ♦

Example 1.51. Differentiate the function ln |u| for u 6= 0.
Solution: We asserted that ln′ u = 1/u for positive values of u, see

(1.19). So, suppose that u < 0. Then u = −|u| and ln |u| = ln(−u). The
chain rule tells us that, for u < 0,

d

du
ln |u| = 1

|u|
d

du
(−u) = (−1)

1
−u

=
1
u

.

This means that for all non-zero u

d

du
ln |u| = 1

u
. ♦(1.35)

More generally, envoking the chain rule

d

dx
ln |u(x)| = u′(x)

u(x)
,(1.36)

assuming that u is differentiable and nowhere zero on its domain. E.g.,

d

dx
ln |x2 − 4| = 2x

x2 − 4
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for all x 6= ±2.
We push matters a bit further. We use the formulae for differentiating

the exponential and natural logarithm functions. Eventually we will verify
them independently.

Consider a function u which is differentiable and nowhere zero on its
domain and q any real number. Then

If f(x) = |u(x)|q then f ′(x) = q
u′(x)
u(x)

|u(x)|q.(1.37)

The assertion follows from (1.36), Example 1.49 and the exponential laws.

f ′(x) =
d

dx
eln f(x)

=
d

dx
eln(|u(x)|q)

=
d

dx
eq ln |u(x)|

=
[

d

dx
(q ln |u(x)|)

]
eq ln |u(x)|

= q
u′(x)
u(x)

|u(x)|q.

Here is a concrete example:

d

dx

∣∣∣∣12 − sin x

∣∣∣∣5 = 5
− cos x

1
2 − sin x

∣∣∣∣12 − sin x

∣∣∣∣5
whenever sin x 6= 1/2. Specifically, we have to exclude all x of the form
π
6 + 2nπ and 5π

6 + 2nπ, where n is an arbitrary integer.
For differentiable functions which are everywhere positive on their do-

main and any real number q the differentiation formula in (1.37) specializes
to

d

dx
uq(x) = qu′(x)uq−1(x).(1.38)

For example:

d

dx
(sin x)1/2 =

cos x

2
√

sin x
for x ∈ (0, π) and

d

dx
(sec2 x + 5)π = 2π sec2 x tan x(sec2 x + 5)π−1 for x ∈ (−π/2, π/2).
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Using the tricks from above, we get the following derivatives:

d

dx
ax = ax ln a (Assume a > 0. Hint: ax = ex lna)

d

dx
xx = (1 + ln x)xx (Assume x > 0, x 6= 1. Hint: xx = ex lnx)

d

dx
xsinx =

(
sin x

x
+ cos x ln x

)
xsinx (Assume x ∈ (0, π/4)).

To differentiate a composition of more than two differentiable functions
we apply the chain rule repeatedly. E.g.,

d

dx
f(g(h(x))) = f ′(g(h(x))

d

dx
g(h(x)) = f ′(g(h(x)) · g′(h(x)) · h′(x).

For example

d

dx
e
√

x2+1 = e
√

x2+1 · 1
2
√

x2 + 1
· 2x =

xe
√

x2+1

√
x2 + 1

d

dx
tan3(5x2 − x + 5) = 3 tan2(5x2 − x + 5) sec2(5x2 − x + 5) · (10x− 1)

1.13.4 Hyperbolic Functions

The exponential function may be used to define the hyperbolic sine and
cosine.

sinhx =
1
2
[
ex − e−x

]
& cosh x =

1
2
[
ex + e−x

]
(1.39)

You are invited to verify that

cosh2 x− sinh2 x = 1.

Conversely, one can show that any point (u, v) on the hyperbola

u2 − v2 = 1

can be expressed as (± cosh x, sinh x) for some x ∈ (−∞,∞). These obser-
vations motive the attribute ‘hyperbolic’.

It is elementary to compute the derivatives of the hyperbolic functions:

sinh′ x = cosh x and cosh′ x = sinhx.
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One may also define other hyperbolic functions

tanh x =
sinhx

cosh x
, coth x =

cosh x

sinhx
, sech x =

1
cosh x

, and csch x =
1

sinh x
.

As a routine application of the rules of differentiation, you may calculate
the derivatives of these functions. There are identities for these hyperbolic
functions, comparable to the identities for the trigonometric functions. You
can find them in any table of mathematical formulas, or you can work them
out yourself.

1.13.5 Derivatives of Inverse Functions

Let us recall. Two functions f and g are said to be inverses of each other
(or each function is the inverse of the other one) if the domain of f is equal
to the range of g, the domain of g is equal to the range of f , and

g(f(x)) = x and f(g(y)) = y(1.40)

for all x in the domain of f and all y in the domain of g. A few essential
properties of inverse functions are listed in

Proposition 1.52. Suppose f and g are inverses of each other.

1. The graph of g is obtained from the graph of f by reflection at the
diagonal.

2. If f is increasing, then so is g. If f is decreasing, then so is g.

3. If f is continuous, then it is monotonic (increasing or decreasing) on
any interval in its domain.

4. If f is continuous and I is an interval in the domain of f , then J =
f(I), the image of I under the map f , is an interval. If I is an open
interval, then J is an open interval.

Some parts of this proposition are elementary, others are consequences
of the intermediate value theorem.

For example, the function f(x) = cos x maps the interval [0, π] to the
inteval [−1, 1]. The function f(x) = ex maps the interval (−∞,∞) to the
interval (0,∞). The function tan x maps the interval (−π/2, π/2) to the
interval (−∞,∞). It is customary to define its inverse arctan x as a func-
tion from (−∞,∞) to (−π/2, π/2). The function sin x maps the interval
[−π/2, π/2] to the interval [−1, 1]. Its inverse arcsin x is typically used with
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Figure 1.9: sin x on [−π/2, π/2]
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Figure 1.10: arcsin y on [−1, 1]

domain [−1, 1], and its range is [−π/2, π/2]. You see the graph of these two
functions in Figures 1.9 and 1.10.

The relation between the derivative of a function and its inverse is spelled
out in our next theorem.

Theorem 1.53. Let f be a differentiable and invertible function which is
defined on an open interval (a, b), and denote the image of f by (A,B).
Denote the inverse of f by g. Then g is differentiable at all points y ∈ (A,B)
for which f ′(g(y)) 6= 0. For these values of y and for x such that f(x) = y
the derivative is given by:

g′(y) =
1

f ′(g(y))
or g′(f(x)) =

1
f ′(x)

.

Proof. We will not give a formally complete proof of the differentiability
assertion. Still, if the line t(x) is close to the graph of the function f(x) at
the point (x, f(x)) and y = f(x), then its reflection T (x) at the diagonal
is close to the graph of the function g(x) at the point (f(x), x) = (y, g(y)).
We need that T (x) is not vertical, and this is assured by the assumption
that t(x) is not horizontal. With the role of x and y being interchanged,
the slope of t(x) is the reciprocal of the slope of T (x). This provides the
formula for the derivative. Actually, this is also easy to calculate.

By definition we have f(g(y)) = y for all y ∈ (A,B). Differentiate both
sides of the equation. We find

f ′(g(y))g′(y) = 1 and g′(y) =
1

f ′(g(y))
,
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as claimed. If y = f(x), then g(y) = g(f(x)) = x, and we obtain the second
version of the formula for the derivative of the inverse of the function:

g′(f(x)) =
1

f ′(x)
.

We apply the theorem to find some important derivatives.

Example 1.54. Assume that the natural logarithm function is differen-
tiable and that ln′ x = 1/x, as asserted in (1.19). Show that the exponential
function is differentiable and that

d

dy
ey = ey.

Solution: By definition, the exponential function is the inverse of the
natural logarithm function ln. Set f(x) = ln x and g(y) = ey in Theo-
rem 1.53. We note that ln′(x) 6= 0 for all x in (0,∞), the domain of the
natural logarithm. The theorem says that the exponential function is dif-
ferentiable and provides the formula for the derivative:

d

dy
ey =

1
ln′(ey)

=
1

1/ey
= ey,

as claimed. ♦

Example 1.55. Show that the function g(y) = arctan y (the inverse of
f(x) = tan x) is differentiable, and that

d

dy
arctan y =

1
1 + y2

.

According to standard conventions we use (−∞,∞) as the domain and
(−π/2, π/2) as the range for arctan.

Solution: The function f(x) = tan x is differentiable on its entire do-
main, and f ′(x) = sec2 x is nowhere zero. Theorem 1.53 tells us that
g(y) = arctan y is differentiable on its entire domain (−∞,∞). The the-
orem also provides us with the formula for the derivative:

arctan′(y) =
1

tan′(arctan y)
=

1
sec2(arctan y)

= cos2(arctan y).

All we need to do now is to figure out what cos2(arctan y) is. To do this
we draw a triangle in which we identify the available data. We refer to the
notation in Figure 1.11.
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Figure 1.11: An informative triangle

There you see a rectangular triangle, the right angle is at the vertex
B. The angle at the vertex A is called u. The adjacent side to this angle is
chosen to be of length 1, and the opposing side of length y. So, by definition,

tan u = y and arctan y = u.

By the theorem of Pythagoras, the length of the hypotenuse is
√

1 + y2.
Then

cos u =
1√

1 + y2
and cos2(arctan y) =

1
1 + y2

.

The conclusion is that

arctan′(y) =
1

1 + y2
.(1.41)

This is exactly what we claimed. ♦

Combined with the chain rule, and assuming the differentiability of u(x),
we find a slightly more general formula:

d

dx
arctan(u(x)) =

u′(x)
1 + u2(x)

.(1.42)
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For example:

d

dx
arctan(x2 + 5) =

2x
1 + (x2 + 5)2

d

dx
arctan(sin x) =

cos x

1 + sin2 x
.

The reader is invited to verify the formulas for the other inverse trigono-
metric functions arcsin x, arccos x, arccot x, and arcsec x as they are given
in Table 1.3 on page 63. For example

Exercise 3. It is customary to think of arcsin x as a function from [−1, 1]
to [−π/2, π/2]. Show that arcsin x is differentiable on (−1, 1), and that its
derivative is

d

dx
arcsin x =

1√
1− x2

.

We may once more improve on this formula. Let u(x) be a differentiable
function which is defined on an open interval, and suppose that |u(x)| < 1.
Then, using the chain rule, we find that

d

dx
arcsin(u(x)) =

u′(x)√
1− u2(x)

.(1.43)

For example:

d

dx
arcsin(3x) =

3√
1− 9x2

if x ∈ (−1/3, 1/3)

d

dx
arcsin(x2) =

2x√
1− x4

if x ∈ (−1, 1)

1.13.6 Implicit Differentiation

Until now we considered functions which were given explicitly. I.e., we were
given an equation y = f(x), where f(x) is some instruction which assigns a
value to x. The points on the graph of f are the points which satisfy the
equation. Consider the equation

(x2 + y2)2 = x2 − y2.(1.44)

The solutions of this equation form a curve5 in the plane called a lemniscate,
see Figure 1.12. Parts of this curve look like the graph of a function, such
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Figure 1.12: Lemniscate

as the points for which y ≥ 0. Without solving the equation for y, we still
like to calculate the slope of curve at one of its points. This process is called
implicit differentiation.

Let us start out with an example which we have studied before.

Example 1.56. The unit circle consists of all points which satisfy the equa-
tion x2 + y2 = 1. Find the slope of the tangent line to the unit circle at the
point (1/2,

√
3/2).

Solution: We write y = y(x) to emphasize that y as a function of x.
Differentiating both sides of the equation of the circle we get

2x + 2y
dy

dx
= 0 or

dy

dx
=
−x

y
.

Plugging in the coordinates of the specified point, we find that

dy

dx

∣∣∣∣
(1/2,

√
3/2)

=
−1√

3
.

We used a different way to indicate at which point we evaluate the derivative
because we had to specify the x and the y coordinate of the point. ♦

5We will rely on the readers intuitive idea of a curve in the plane.
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Example 1.57. Find the slope of the tangent line to the lemniscate

(x2 + y2)2 = x2 − y2,

and find the coordinates of the points where the tangent line is horizontal.
Solution: You see a picture of the lemniscate in Figure 1.12. As in

Example 1.56, we consider y as a function of x and differentiate both sides
of the equation. We find

2(x2 + y2)(2x + 2y
dy

dx
) = 2x− 2y

dy

dx
.

Bring all terms with a factor dy/dx to the left hand side of the equation and
those without to the right hand side.

(2y(x2 + y2) + y)
dy

dx
= x(1− 2(x2 + y2)).

Finally we get an explicit expression for dy
dx in terms of x and y:

dy

dx
=

x(1− 2(x2 + y2))
2y(x2 + y2) + y

=
x(1− 2(x2 + y2))
y(2(x2 + y2) + 1)

.

Given any point (x, y) with y 6= 0 on the lemniscate, we can plug it into the
expression for dy

dx and we get the slope of the curve at this point.
E.g, the point (x, y) = (1

2 , 1
2

√
−3 + 2

√
3) is a point on the lemniscate,

and at this point the slope of the tangent line is

dy

dx
=

2−√2√
3
√
−3 + 2

√
3
.

This specific calculation takes a bit of arithmetic skill and effort to carry
out.

The tangent line is horizontal whenever dy
dx = 0. A quick look at Fig-

ure 1.12 tells us that we may ignore points where x = 0 or y = 0. That
means that dy

dx = 0 whenever

1− 2(x2 + y2) = 0 or x2 + y2 =
1
2
.

Substitute x2 + y2 = 1
2 , and y2 = 1

2 − x2 into the equation of the curve.
Then we get an equation in one variable:

1
4

= x2 −
(

1
2
− x2

)
or x2 =

3
8

and y2 =
1
8
.
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The points at which the tangent line to the lemniscate is horizontal are

(x, y) = (±
√

6
4

,±
√

2
4

) ≈ (±.6124,±.3536). ♦

Example 1.58. Suppose you drop a circle of radius 1 into a parabola with
the equation y = 2x2. At which points will the circle touch the parabola?6
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3

Figure 1.13: Ball in a Cup.

Solution: You see a picture of the problem in Figure 1.13. The crucial
observation in this example is, that the tangent line to the parabola and the
circle will be the same at the point of contact.

Suppose the coordinates of the center of the circle are (0, a), then its
equation is x2 + (y − a)2 = 1. Differentiating the equation of the parabola
with respect to x, we find that dy

dx = 4x. Differentiating the equation of the
circle with respect to x, we get

2x + 2(y − a)
dy

dx
= 0.

Assuming that dy
dx is the same for both curves at the point of contact, we

substitute dy
dx = 4x into the second equation. After some implifications we

6More sensibly, drop a ball of radius 1 into a cup whose vertical cross section is the
parabola y = 2x2.
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find:

x(1 + 4(y − a)) = 0.

The ball it too large to fit into the parabola and touch at (0, 0). So we may
assume that x 6= 0. Solving the equation 1 + 4(y − a) = 0 for y, we find
that the y coordinate of the point of contact is y = a − 1

4 . We substitute
this expression into the equation of the circle and find that the x coordinate
of the point of contact is x = ±

√
15
4 . Substituting this into the equation of

the parabola, we find that y = 15
8 at the point of contact. In summary, the

circle touches the parabola in the points

(x, y) =

(
±
√

15
4

,
15
8

)
. ♦

Exercise 4. Consider the curve given by the equation

x3 + y3 = 1 + 3xy2.

Find the slope of the curve at the point (x, y) = (2,−1).

Exercise 5. Consider the curve given by the equation x2 = sin y. Find the
slope of the curve at the point with coordinates x = 1/ 4

√
2 and y = π/4.

Exercise 6. Repeat Example 1.57 with the curve given by the equation
y2−x2(1−x2) = 0. You find a picture of this Lissajous figure in Figure 1.14.

1.14 Related Rates

Many times you encounter situations in which you have two related variables,
you know at which rate one of them changes, and you like to know at which
rate the other one changes. In this section we treat such problems.

Example 1.59. Suppose the radius of a ball changes at a rate of 2 cm/min.
At which rate does its volume change when r = 20 cm?

Solution: Denote the volume of the ball by V and its radius by r. We
use t to denote the time variable. We consider V as a function of r as well
as t. The formula for the volume of a ball is V (r) = 4π

3 r3. According the
the chain rule:

dV

dt
=

dV

dr

dr

dt
= 4πr2 dr

dt
.

With r = 20 and dr
dt = 2 we get dV

dt = 3200π cm3/min. This is the rate at
which the volume of the ball changes with respect to time. ♦
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Figure 1.14: y2 − x2(1− x2) = 0

Example 1.60. Suppose a particle moves on a circle of radius 10 cm and
centered at the origin (0, 0) in the Cartesian plane. At some time the particle
is at the point (5, 5

√
3) and moves downwards at a rate of 3 cm/min. At

which rate does it move in the horizontal direction?
Solution: The equation of the circle is x2 +y2 = 100. We consider both

variables, x and y, as functions of the time variable t. Implicit differentiation
of the equation of the circle gives us the equation

2x
dx

dt
+ 2y

dy

dt
= 0.

In the given situation x = 5, y = 5
√

3, and dy
dt = −3. We find that dx

dt = 3
√

3,
so that the particle is moving to the right at a rate of 3

√
3 cm/min. ♦

Example 1.61. Pressure (P ) and volume (V ) of air at room temperature
are related by the equation7

PV 1.4 = C.

7Boyle-Mariotte described the relation between the pressure and volume of a gas. They
derived the equation PV γ = C. It is called the adiabatic law. The constant γ depends on
the molecular structure of the gas and the temperature. For the purpose of this problem,
we suppose that γ = 1.4 for air at room temperature.
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Here C is a constant. At some instant t0 the pressure of the gas is 25 kg/cm2

and the volume is 200 cm3. Find the rate of change of P if the volume
increases at a rate of 10 cm3/min.

Solution: We consider P as a function of V . Differentiation of the
equation yields

dP

dV
V 1.4 + 1.4PV .4 = 0 or

dP

dV
= −1.4P

V
.

According to the chain rule

dP

dt
=

dP

dV

dV

dt
= −1.4P

V

dV

dt
.

Substituting the given information we find that the pressure decreases at a
rate of 1.75 kg/cm2sec. ♦

Example 1.62. The mass M of a particle at velocity v, as perceived by an
observer in resting position, is

M(v) =
m√

1− v2/c2
,

where m is that mass at rest and c is the speed of light. This formula is from
Einstein’s special theory of relativity. At which rate is the mass changing
when the particle’s velocity is 90% of the speed of light, and increasing at
.001c per second?

Solution: According to our rules of differentiation

dM

dv
=

mvc

(c2 − v2)3/2
.

Applying the chain rule and substituting the values, we find

dM

dt
=

dM

dv

dv

dt
=

mvc2

1000(c2 − v2)3/2
=

9
√

19m

3610
≈ .010867m.

The perceived mass increases at a rate of approximately 1% of its mass at
rest. ♦

Exercise 7. A ladder, 7 m long, is leaning against a wall. Right now the
foot of the latter is 1 m away from the wall. You are pulling the foot of the
ladder further away from the wall at a rate of .1 m/sec. At which rate is
the top of the ladder sliding down the wall?
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1.15 Exponential Growth and Decay

An idealistic, but very useful model for population growth is the Malthusian
Law

A′(t) = aA(t).(1.45)

It says that the rate of change of a population is proportional to its size. We
denoted the proportionality factor by a. We saw that the functions A(t) =
Ceat are solutions of this equation, and it can be shown that on an interval
any solution is of this form. We also say that A(t) grows exponentially and
a is the relative growth rate.

The equation in (1.45) is an example of a differential equation, an equa-
tion which involves a function and its derivatives, and the unknown is a
function.

We may specify the value of A at some time t0, say A0 = A(t0). Then
we have an initial value problem

A′(t) = aA(t) and A0 = A(t0).(1.46)

Theorem 1.63. On an interval which contains t0 the function

A(t) = A0e
a(t−t0)

is the unique solution8 of the initial value problem in (1.46).

The essential aspects of dealing with (1.46) are addressed in

Example 1.64. Suppose the size of a population of bacteria in a laboratory
experiment is C1 = 5, 000 at time t1 = 2 and C2 = 7, 000 at time t2 = 5.
Here time is measured in hours since the beginning of the experiment.

1. Find the relative growth rate a of the population.

2. Find the formula for the size of the population at any time t ≥ 0.

3. Predict the size of the population at time t = 10.

4. Find the time at which the population reaches 8, 000.

5. Find the time within which the population doubles9.
8That the function satisfies the differential equation follows from (1.19), which we still

need to prove. The uniqueness assertion follows from Proposition 2.9 on page 68.
9Note that the doubling time depends only on the relative growth rate a.
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Solution: We denote the size of the population at time t by A(t). The
theorem tells us that A(t) = A0e

a(t−t0), where A0 = A(t0).
1. To calculate the relative growth rate a observe that

C2

C1
=

A0e
a(t2−t0)

A0ea(t1−t0)
= ea(t2−t1) and ln

(
C2

C1

)
= a(t2 − t1).

We find that

a =
ln C2 − ln C1

t2 − t1
=

ln 1.4
3

≈ .11.

The population grows at a rate of about 11% per hour.
2. and 3. The size of the population at any time t ≥ 0 is

A(t) = 5000ea(t−2) ,

where a is as above. Substituting t = 10 we find that A(10) ≈ 12, 264.
4. Suppose the size of the population reaches 8, 000 at time t1, then

8000 = 5000ea(t1−2) or ln(8/5) = a(t1 − 2) or t1 =
ln(1.6)

a
+ 2 ≈ 6.2

The size of the population reaches 8, 000 about 6.2 hours into the experiment.
5. Suppose at some time t0 the size of the population is A0 = A(t0) and

T hours later the size of the population is 2A0 = A(t0 + T ). Then

A(t0 + T ) = A0e
aT = 2A0 or eaT = 2 and aT = ln 2.

Thus the doubling time is T = ln 2
a ≈ 6.18 hours.

Consider a radioactive substance. Experiments have shown that the
rate at which radioactive decays occur is proportional to the amount of
radioactive material present. This rate is proportional to the rate at which
the amount of the material decreases. Suppose t denotes time and A(t) the
amount of radioactive substance at time t. The experience which we just
described can be expressed as a differential equation

A′(t) = −kA(t).(1.47)

The minus sign in the equation is included so that k will be positive. The
half-life T of a radioactive substance is the time within which half of it
decays. As in the computation of the doubling time in the previous example,
one finds

T =
ln 2
k

.(1.48)
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In the late 1940ies Willard Libby invented (or discovered) the method of
carbon-14 dating. He was awarded the Nobel price for it. In brief, the idea is
as follows. Carbon-14 occurs naturally in the atmosphere, and the amount
is believed to have been essentially constant for a long time (until recent
nuclear testing). All living organisms absorb it. Within a living organism
there is an equilibrium. The amount which is absorbed equals the amount
which decays. The level of the equilibrium is characteristic for the organism,
or a part thereof (e.g. wood from an oak or a human bone). After death
no more carbon-14 is absorbed, and the carbon-14 which was present at the
time of death decays. The half-life of carbon-14 has been determined to be
about 5568 years. For many organisms one also knows how many carbon-14
decays to expect at the time of death. Measuring the number of decays in
a dead organism allows us to determine the time of death, approximately.
We explain the process in a numerical example.

Example 1.65. Suppose we measure 6.68 carbon-14 decays per minute and
gram in a certain kind of wood at the time of death of the tree. Suppose
dead wood of the same kind shows 1.8 decays per minute and gram. How
long ago did the tree die?

Solution: Let t0 = 0 be the time of death of the tree, and t1 the present
time, measured in years. The number of decays to be expected t years after
death is

A(t) = 6.68e−
ln 2
5568

t.

We have that A(t1) = 1.8. From this we calculate:

ln
1.8
6.68

= − ln 2
5568

t1 or t1 = −5568
ln 2

ln
(

1.8
6.68

)
≈ 10, 534.(1.49)

The tree died approximately 10, 500 years ago.

1.16 More Exponential Growth and Decay

More generally than in (1.45), consider the differential equation

f ′(t) = af(t) + b,(1.50)

where a and b are constants, and a 6= 0. A time independent solution (steady
state solution) of this equation is f(t) = −b/a.
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Theorem 1.66. Functions of the form

f(t) = ceat − b

a

are solutions of the differential equation in (1.50). Here c denotes an arbi-
trary constant. On an interval every solution of (1.50) is of this form.

We obtain a unique solution if we add an initial condition to the differential
equation in (1.50).

Theorem 1.67. On an interval which contains to, the function

f(t) =
(

y0 +
b

a

)
ea(t−t0) − b

a

is the unique solution of the initial value problem

f ′(t) = af(t) + b and f(t0) = y0.

Remark 2. It is not hard to verify that the given functions are solutions of
the respective problems. The uniqueness assertion is a minor modification
of Proposition 2.9 on page 68.

Let us apply these ideas to solve some problems. The important aspects
are to translate the given information into a mathematical equation. The
rest will be routine calculation.

Example 1.68. On graduation day the balance of your student loan is
$15,000. Interest is added at a rate of .5% per month, and you are repaying
the loan at a rate of $ 200.00 per month. Analyze the future of the loan.

Solution: As variable we use time, denoted by t and measured in
months. We set t = 0 at the time of graduation. This is the time at
which you start to repay the loan. Denote the balance of your loan at time
t by B(t). The balance increases at a rate of .005B(t) due to interest being
added and decreases at a rate of $200.00 per month due to payments which
you make. In summary, we have the initial value problem

B′(t) = .005B(t) − 200 and B(0) = 15, 000.

According to Theorem 1.67 the solution of the initial value problem is

B(t) =
(

15, 000 +
−200
.005

)
e.005t − −200

.005
= −25, 000e.005t + 40, 000.



1.16. MORE EXPONENTIAL GROWTH AND DECAY 45

For example, B(T ) = 0 if

T =
1

.005
ln
(

40
25

)
≈ 94.

After approximately 94 months (7 years and 10 months) you repaid the
loan. Your total payments were $18,800, so that you paid the principal plus
$3,800 in interest. ♦

Example 1.69. You are absorbing a medication at a rate of 3 mg per hour.
(You can keep this rate constant with a skin patch.) The liver metabolizes
the medication at a rate of 4% per hour. Analyze the amount of medication
in your body at any time.

Solution: We use time as independent variable, denote it by t and
measure it in hours. We denote by t = 0 the time when we start taking
the medication. Let A(t) denote the amount of medication in your body,
measured in milligrams. Then A(t) increases at a rate of 3 mg per hour
because you are taking in medication and at the same time A(t) decreases
at a rate of .04A(t) due to your liver metabolizing the medication. We have
the initial value problem

A′(t) = −.04A(t) + 3 and A(0) = 0.

The solution of this problem is

A(t) = −75e−.04t + 75.

For example, after 12 hours there will be about 28.6 milligram of medication
in your body. It will take slightly more than 40 hours before the amount of
medication in your body reaches 60 milligrams. The steady state solution
of the problem is A(t) = 75. The amount of medication will stabilize at this
amount with time. ♦

Example 1.70 (Newton’s Law of Cooling). Suppose you have an ob-
ject whose temperature is different from the temperature of its surround-
ings. With time, the temperature of the object will approach the one of
its surroundings. We discuss how this happens, at least under idealized
circumstances.

Think of a cup of coffee. You stir the coffee gently so that the tem-
perature in the cup remains homogeneous and almost no energy is added
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through the process of stirring.10 Denote the temperature of the coffee by
T . It is a function of time, so that we write T (t). Newton’s law of cooling
says that the rate at which the heat is transferred, and with this the rate
of change of temperature of the coffee, is proportional to the temperature
difference. If K is the temperature of the surroundings, then

T ′(t) = a(T (t)−K) = aT (t)− aK.(1.51)

Setting b = −aK, this is the differential equation in (1.50).
Let us work out a numerical example. At time t = 0, just after you

poured the coffee into your cup, its temperature is 95 degrees Celsius. Five
minutes later the temperature has dropped to 80 degree, while you stir it
slightly and patiently. The room temperature is 25 degrees.

1. Determine the function T (t).

2. Find t1, such that T (t1) = 70 degrees Celsius.

Solution: To apply Theorem 1.67, we set t0 = 0, y0 = 95, and K = 25.
Note that −b/a = K. Putting all of this into the formula for the solution of
the initial value problem, we get that

T (t) = (95− 25)eat + 25 = 70eat + 25.

To determine a we use that

T (5) = 80 = 70e5a + 25,

and we conclude that a = 1
5 ln

(
55
70

) ≈ −.0482. Using these data, Equa-
tion (1.51) says that the temperature of the coffee drops at a rate of about
.048 degrees per minute for each degree of difference between the tempera-
ture of the coffee and the room temperature. Having a numerical value for
a gives us an explicit expression for the temperature T as a function of t:

T (t) = 70e−.0482t + 25.
10The physics of heat transfer changes substantially if you take a solid object, such

as a turkey in the oven. The temperature in the solid object will not be homogenous,
the outside warms up much faster than the inside. In addition, the specific heat (the
amount of energy needed to increase the temperature of one unit of the material by one
degree) varies. It is different for fat, protein, and bone. Furthermore, the specific heat
is highly temperature dependent for substances like protein. That means, a in (1.51)
depends on the temperature T . All of this leads to a significantly different development
of the temperature inside a turkey as you roast it for your Thanksgiving dinner.
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We like to find out the time t1 for which

T (t1) = 70e−.0482t1 + 25 = 70.

Solving the equation for t1, we find that t1 ≈ 9.17. That means that the
temperature drops to 70 degrees approximately 9.17 minutes after pouring
it. ♦

Exercise 8. A chemical factory is located on the banks of a river. Down
stream from the factory is a lake, and the river is the only contributor to
the lake. Assume that the amount of water carried by the river is the same
all year around, and the amount of water in the lake is 10 times the amount
of water carried by the river per year. In negotiations which the EPA, the
owner has agreed to an acceptable level of 2.5 mg per m3 of a pollutant in
the lake. After a major accident the level has risen to 15 mg per m3. As a
remedy, the factory owner proposes to reduce the emission of pollution so
that the level of pollutant in the river is only 1.5 mg per m3. It is assumed
that the pollutant is distributed uniformly in the lake at any time.

1. Let P (t) denote the amount of pollutant (measured in mg per m3) in
the lake at time t. Let t0 = 0 be the time just after the accident and
at which the clean-up strategy is implemented. State the initial value
problem for P (t).

2. Find the function P (t).

3. At which time will the level of pollution be back to 2.5 mg per m3?

Exercise 9. The population of an endangered species of birds on Kauai
decreases at a relative rate of 25% per year. Currently, at time t0 = 0, the
population is estimated to be 700 birds. A government agency raises the
species in captivity and releases birds into the wild at a rate of 80 birds per
year. Denote the size of the population at time t by P (t), where t denotes
time and is measured in years.

1. State the initial value problem for P (t).

2. Find the function P (t).

3. At which time will the population drop to 500 birds?

4. What is the long term estimate for the population of this species in
the wild?
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1.17 The Second and Higher Derivatives

Let f(x) be a function which is defined on an open set. If the function is
differentiable at each point of its domain, then f ′(x) is again a function with
the same domain as f(x). We may ask whether the function f ′(x) is dif-
ferentiable. Its derivative, wherever it exists, is called the second derivative
of f . It is denoted by f ′′(x). This process can be iterated. The deriva-
tive of the second derivative is called the third derivative, and denoted by
f ′′′(x), etc. We will make use of the second derivative. Leibnitz’s notation
for the second derivative of a function f(x) is d2f/dx2. Here is a sample
computation in which you are invited to fill in the details:

d2

dx2
esin x =

d

dx
cos xesin x = (− sin x + cos2 x)esin x.

Exercise 10. Find the second derivatives of the following functions:

(1) f(x) = 3x3 + 5x2

(2) g(x) = sin 5x

(3) h(x) =
√

x2 + 2

(4) i(x) = e5x

(5) j(x) = tan x

(6) k(x) = cos(x2)
(7) l(x) = ln 2x

(8) m(x) = ln(x2 + 3)
(9) n(x) = arctan 3x

(10) o(x) = sec(x3)

(11) p(x) = ln2(x + 4)
(12) q(x) = ecos x

(13) r(x) = ln(tan x)

(14) s(x) = ex2−1

(15) t(x) = sin3 x.

1.18 Numerical Methods

In this section we introduce some methods for numerical computations.
Their common feature is, that for a differentiable function we do not make
a large error when we use the tangent line to the graph instead of the graph
itself. This rather casual statement will become clearer when you look at
the individual methods.

1.18.1 Approximation by Differentials

Suppose x0 is an interior point of the domain of a function f(x) and f(x)
is differentiable at x0. Assume also that f(x0) and f ′(x0) are known. The
method of approximation by differentials provides an approximate values
f(x1) if x1 is near x0. We use the symbol ‘≈’ to stand for ‘is approximately’.
One uses the formula

f(x1) ≈ f(x0) + f ′(x0)(x1 − x0).(1.52)
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On the right hand side in (1.52) we have l(x1), the tangent line to the graph
of f(x) at (x0, f(x0)) evaluated at x1. In the sense of the definition of the
tangent line in Section 1.6, f(x1) is close to l(x1) for x1 near x0.

Example 1.71. Find an approximate value for 3
√

9.
Solution: We set f(x) = 3

√
x, so we are supposed to find f(9). Note

that

f ′(x) =
1
3
x−2/3, f(8) = 2, and f ′(8) =

1
12

.

Formula (1.52), applied with x1 = 9 and x0 = 8, says that

3
√

9 = f(9) ≈ 2 +
1
12

(9− 8) =
25
12
≈ 2.0833.

Your calculator will give you 3
√

9 ≈ 2.0801. ♦

Example 1.72. Find an approximate value for tan 46◦.
Solution: We carry out the calculation in radial measure. Note that

46◦ = 45◦ + 1◦, and this corresponds to π/4 + π/180. Use the function
f(x) = tan x. Then f ′(x) = sec2 x, f(π/4) = 1, and f ′(π/4) = 2. Formula
(1.52), applied with x1 = (π/4 + π/180) and x0 = π/4 says

tan 46◦ = tan
(π

4
+

π

180

)
≈ tan

(π

4

)
+ sec2

(π

4

)( π

180

)
= 1 +

π

90
≈ 1.0349.

Your calculator will give you tan 46◦ ≈ 1.0355. ♦

Exercise 11. Use approximation by differentials to find approximate values
for

(1) 5
√

34 (2) tan 31◦ (3) ln 1.2 (4) arctan 1.1.

In each case, compare your answer with one found on your calculator.

We have been causal in (1.52) insofar as we have not estimated (provided
an upper bound for) the error which we make using the right hand side of
(1.52) instead of of the actual value of the function on the left hand side.
The inequality in Definition 1.25 on page 12 provides us with an estimate.
According to this slightly more demanding definition, differentiability of the
function f(x) means that there exist numbers A and d > 0, such that

|f(x1)− [f(x0) + f ′(x0)(x1 − x0)| ≤ A(x1 − x0)2

whenever |x1−x0| < d. Thus, if we know A and d, then we can approximate
the error as long as |x1 − x0| < d.
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Example 1.73. Find an approximate value for sin 31◦ and estimate the
error.

Solution: Set f(x) = sinx. Then f ′(x) = cos x, f(π/6) = 1/2, and
f ′(π/6) =

√
3/2. Measuring angles in radians we set x0 = π/6 and x1 =

π/6 + π/180. Applying the formula in (1.52), we find

sin 31◦ ≈ sin
π

6
+

π

180
cos

π

6
=

1
2

(
1 +

√
3

π

180

)
≈ .515115.

The calculator will tell that sin 31◦ ≈ .515038.
From the computation in Example 1.31 on page 17 we also know that we

may use A = 1 and d = π/4 in the differentiability estimate. The estimate
assures us that the error is at most

(x1 − x0)2 =
( π

180

)2 ≤ .000305.

Comparison of the actual and approximate value confirm this. ♦

Example 1.74. Use approximation by differentials to find an approximate
value of

√
10 and give an upper bound for the error.

Solution: We use f(x) =
√

x and x0 = 9. The f ′(x) = 1/(2
√

x),
f(x0) = 3, and f ′(x0) = 1/6. The formula in (1.52) tells us that

√
10 = f(10) ≈ f(9) + f ′(9)(10 − 9) = 3 +

1
6
≈ 3.16666.

The calculator will give you
√

10 ≈ 3.16228.
For the error estimate we may use

A =
1

2(
√

x0)3

and any d > 0, see (1.16). The estimate assures us that the error is at most

1
2(
√

x0)3
(x1 − x0)2 =

1
54

.

The actual error is again substantially less than this. ♦

Exercise 12. Use approximation by differentials to find approximate values
for

(1) cos 28◦ (2)
√

26 (3) sin 47◦.

In each case, estimate also the maximal error which you may have made by
using the method of approximation by differentials.



1.18. NUMERICAL METHODS 51

1.18.2 Newton’s Method

Newton’s method is designed to find the zeros of a function. You have learned
how to solve linear and quadratic equations, i.e., finding the zeros of func-
tions of degree 1 and 2. More sophisticated methods allow you to find the
exact solutions of polynomial equations of degree three and four. For poly-
nomials of degree greater or equal to 5 and most other functions there are
no general methods for finding their roots.

Newton’s method works as follows. Suppose we want to find a zero of a
differentiable function f(x), i.e., we want to find some x, such that f(x) = 0.
Suppose that by some means we know that such an x exists, and that x0 is
not far from x. Then we set

x1 = x0 − f(x0)
f ′(x0)

, x2 = x1 − f(x1)
f ′(x1)

, x3 = x2 − f(x2)
f ′(x2)

, etc.(1.53)

and in general

xn+1 = xn − f(xn)
f ′(xn)

.(1.54)

Geometry of Newton’s Method: Let us give a geometric explanation
for the formlas. Given any x0 at which f is defined and differentiable, we
obtain the tangent line l(x) to the graph of f at this point. Then x1, as
given in (1.53), is the point at which l(x) intersects the x-axis. Specifically,

l(x) = f ′(x0)(x− x0) + f(x0), and l(x1) = 0 if x1 = x0 − f(x0)
f ′(x0)

.

This means that we accept that the tangent line is close to the graph of
the function, and instead of finding the zero of the function itself, we find
the zero of the tangent line. The process is then iterated.

Let us calculate
√

A, i.e., the positive root of the function f(x) = x2−A.
Then f ′(x) = 2x, and

xn+1 = xn − f(xn)
f ′(xn)

= xn − x2
n −A

2xn
=

x2
n + A

2xn
=

1
2

(
xn +

A

xn

)
(1.55)

If we use A = 3 and x0 = 2, then we find

x1 =
1
2

(
2 +

3
2

)
=

7
4
, x2 =

1
2

(
7
4

+
12
7

)
=

97
56

and x3 =
18817
10864

.

We summarize the computation in Table 1.1. In the first column you find
the subscript n. In the following two columns you find the values of xn, once
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expressed as a fraction of integers, once in decimal form. In the last column
you see the square of xn. At least x2

3 is rather close to 3. Your calculator
will give you 1.73205080757 as an approximate value of

√
3. You see that

our value for x3 is rather precise. In fact, if you carry the calculation one
step further and find x4, then the accuracy of this approximation of

√
3 will

exceed the accuracy of most calculators. The numbers in the last column
show that we are making rapid progress in finding a good approximation of√

3.

n xn xn x2
n

0 2 2.0000000000 4.0000000000

1 7/4 1.7500000000 3.0625000000

2 97/56 1.7321428571 3.0003188775

3 18817/10864 1.7320508100 3.0000000085

Table 1.1: The Babylonian Method

More than 4000 years ago the Babylonians used the outermost expres-
sions in (1.55)

xn+1 =
1
2

(
xn +

A

xn

)
to find good approximations of square roots, expressed as rational numbers.
We refer to the described procedure as the Babylonian method.

Let us consider one more example to illustrate Newton’s method. Find
a solution of the equation

x sin x = cos x.

Equivalently, we may say, find a root of the function f(x) = x sinx− cos x.
Step 1: Let us make sure that there is a root of the function to be found.

Observe that f(0) = −1 < 0 and f(π/2) = π/2 > 0. The intermediate value
theorem tells us that f(x), as a continuous funtion, has a root in the interval
(0, π/2). Let us call this root x.

Step 2: Let us come up with a first guess for a root. Considering the
values of f at the end points of the interval, we guess that x0 = 1 is not
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too far away from the root, which we know to exist by Step 1. Actually
f(1) ≈ .3.

Step 3: Let us improve the guess: Set

x1 = x0 − f(x0)
f ′(x0)

≈ .8645.

Your calculator will tell you that f(x1) ≈ .00874. You see that f(x1) is
much closer to zero than f(x0), and in this sense we expect that x1 is much
closer to the root x of f(x) than x0. We made progress finding x.

Step 4: Repeat Step 3 and calculate x2, x3, . . . . The distance between
x and xn will decrease rapidly as n increases.

We explained Newton’s method because we want to illustrate the power
of the concept ‘tangent line.’ A full discussion of Newton’s method requires
mathematical tools which are not available to us at this time. In general,
many interesting phenomena can occur. Still, the principle problem is as
follows. Suppose that f(x) is a differentiable function and f(x) = 0 and x0

is given. Suppose that xn for n ≥ 1 are computed according to (1.54). Do
the xn tend (converge) to x, and how fast?

For completeness sake, we give an answer. Consider an interval I =
[x− a, x + a], and suppose that |f ′(x)| ≥ m and |f ′′(x)| ≤ M on I. Suppose
xn ∈ I and |x− xn| < 2m

M . A theorem from advanced calculus asserts that

|x− xn+1| ≤ M

2m
(x− xn)2.(1.56)

We illustrate the theorem by applying it to the previous example. Ob-
serve that f(.8) < 0 and f(.9) > 0. This tells us that x ∈ [.8, .9]. Let us
set a = .2, so that I ⊂ J = [.6, 1.1]. On J , and with this also on I, we
have that |f ′(x)| ≥ m = 1.5 and |f ′′(x)| ≤ M = 2.5. You are invited to
verify these estimates using technology. In (1.56) we use that M

2m < 1. As
first guess we used x0 = 1, so that we know that |x− x0| < .2. The quoted
theorem asserts that |x − x1| < .04. If we repeat the process, then we see
that |x− x2| < .0016 and |x− x3| < .00000256. This illustrates that the xn

approach x rapidly.
There is one feature of Newton’s method which helps. You may say

that with each iteration you make a fresh start, and in this sense previous
round-off errors don’t carry over.

1.18.3 Euler’s Method

Euler’s method is designed to find, by numerical means, an approximate
solution of the following kind of problem:
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Problem 1. Find a function y(t) which satisfies

y′ =
dy

dt
= F (t, y) and y(t0) = y0.(1.57)

Here F (t, y) denotes a given function in two variables, and t0 and y0 are
given numbers.

The first condition on y in (1.57) is a first order differential equation. It is
an equation which involves a function and its derivative, and the unknown is
the function. The second condition is called an initial condition. It specifies
the value of the function at one point. For short, the problem in (1.57) is
called an initial value problem.

Approach in one step: Suppose you want to find y(T ) for some T 6= t0.
Then you might try the formula

y(T ) ≈ y(t0) + y′(t0)(T − t0) = y0 + F (t0, y0)(T − t0).(1.58)

The tangent line to the graph of y at (t0, y0) is

l(t) = y(t0) + y′(t0)(t− t0),

so that the middle term in (1.58) is just l(T ). The first, approximate equality
in (1.58) expresses the philosophy that the graph of a differentiable function
is close to its tangent line, at least as long as T is close to t0. To get the
second equality in (1.58) we use the differential equation and initial condition
in (1.57), which tell us that

y′(t0) = F (t0, y(t0)) = F (t0, y0).

The Logistic Law

The differential equation in our next example is known as the logistic law
of population growth. In the equation, t denotes time and y(t) the size of
a population, which depends on t. The constants a and b are called the
vital coefficients of the population. The equation was first used in popula-
tion studies by the Dutch mathematician-biologist Verhulst in 1837. The
equation refines the Malthusian law for population growth (see (1.45)).

In the differential equation, the term ay expresses that population growth
is proportional to the size of the population. In addition, the members of
the population meet and compete for food and living space. The probability
of this happening is proportional to y2, so that it is assumed that population
growth is reduced by a term which is proportional to y2.
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Example 1.75. Consider the initial value problem:

dy

dt
= ay − by2 and y(t0) = y0,(1.59)

where a and b are given constants. Find an approximate value for y(T ).

Remark 3. An exact solution of the initial value problem in (1.59) is given
by the equation

y(t) =
ay0

by0 + (a− by0)e−a(t−t0)
(1.60)

This is not the time to derive this exact solution, though you are invited to
verify that it satisfies (1.59). We are providing the exact solution, so that
we can see how well our approximate values match it.

Solution: Setting F (t, y) = ay− by2, you see that the differential equa-
tion in this example is a special case of the one in (1.57). According to the
formula in (1.58) we find

y(T ) ≈ y0 + (ay0 − by2
0)(T − t0).(1.61)

We expect a close approximation only for T close to t0. ♦
Let us be even more specific and give a numerical example.

Example 1.76. Consider the initial value problem.

dy

dt
=

1
10

y − 1
10000

y2 and y(0) = 300.(1.62)

Find approximate values for y(1) and y(10).
Solution: Substituting a = 1/10, b = 1/10000, t0 = 0, and y0 = 300

into the solution in (1.61), we find that

y(1) ≈ 300 +
(

300
10

− 3002

10000

)
(1− 0) = 321.

According to the exact solution in (1.60), we find that

y(t) =
3000

3 + 7e−t/10
.

Substituting t = 1, we find the exact value y(1) = 321.4; this number is
rounded off. So, our approximate value is close.

For T = 10 the formula suggests that y(10) ≈ 510. According to the
exact solution for this initial value problem, y(10) = 538.1. For this larger
value of T , the formula in (1.61) gives us a less satisfactory result. ♦
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Multi-step approach: We like to find a remedy for the problem which
we discovered in Example 1.76 for T further away from t0. Consider again
Problem 1 on page 54. We want to get an approximate value for y(T ). For
notational convenience we assume that T > t0. Pick several ti between t0
and T :

t0 < t1 < t2 < · · · < tn = T.

Starting out with t0 and y(t0), we use the one step method from above to get
an approximate value for y(t1). Then we pretend that y(t1) is exact, and we
repeat the process. We use t1 and y(t1) to calculate an approximate value for
y(t2). Again we pretend that y(t2) is exact and use t2 and y(t2) to calculate
y(t3). Iteratively, we calculate [ti+1, y(ti+1)] from [ti, y(ti)] according to the
formula in (1.58):

[ti+1, y(ti+1)] = [ti+1, y(ti) + F (ti, y(ti))(ti+1 − ti)](1.63)

We continue this process until we reach T .
For reasonably nice11 expressions F (t, y) the accuracy of the value which

we get for y(T ) will increase with n, the number of steps we make (at least if
all steps are of the same length). On the other hand, in an actual numerical
computation we also make round-off errors in each step, and the more steps
we make the worse the result might get. Experience will guide you in the
choice of the step length.

Example 1.77. Consider the initial value problem

dy

dt
=

1
10

y − 1
10000

y2 and y(0) = 10.(1.64)

1. Apply the multi-step method to find approximate values for y(t) at
t1 = 5, t2 = 10, t3 = 15, . . . , t20 = 100. Arrange them in a table.

2. Graph the points found in the previous step together with the actual
solution of the initial value problem.

Solution: As points in the multi-step process we use

t0 = 0, t1 = 5, t2 = 10, t3 = 15, t4 = 20, . . . , t20 = 100.
11We do not want to make this term precise, but the F (t, y) in Example 1.75 is of this

kind.
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t y(t) & t y(t) & t y(t)

0 10.00 35 153.96 70 857.73

5 14.95 40 219.09 75 918.74

10 22.31 45 304.62 80 956.07

15 33.22 50 410.55 85 977.07

20 49.28 55 531.55 90 988.27

25 72.70 60 656.05 95 994.07

30 106.41 65 768.87 100 997.02

Table 1.2: Solution of Problem 1.77

For each ti (0 ≤ i ≤ 19) we use the formula

y(ti+1) = y(ti) + 5
(

y(ti)
10

− y2
i (ti)

10000

)
and calculate y(t1), y(t2), y(t3), . . . , y(t20) consecutively. We summarize
the calculation in Table 1.2.

In Figure 1.15 you see the graph of the exact solution of the initial value
problem. You also see the points from Table 1.2. The points suggest a graph
which does follow the actual one reasonably closely. But you see that we are
definitely making errors, and they get worse as t increases12. You may try
a shorter step length. The points will follow the curve much more closely if
you use t1 = 1, t2 = 2, t3 = 3, . . . , t100 = 100 in your calculation. ♦

Steady States: Let us consider some very specific solutions of our initial
value problem in (1.57):

y′ =
dy

dt
= F (t, y) and y(t0) = y0.

Suppose F (y0, t) = 0 for all t. Then the constant function y(t) = y0 is a
solution of the problem. Such a solution is called a steady state solution.

12It is incidental that the points eventually get closer to the graph again. This is due
to the specific problem, and will not occur in general.
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Figure 1.15: Illustration of Euler’s Method

Example 1.78. Find the steady states of the differential equation (see
(1.50) in Section 1.16)

f ′(t) = af(t) + b.(1.65)

Solution: Apparently, f ′(t) = 0 if and only if f(t) = −b/a. So the
constant function f(t) = −b/a is the only steady state of this differential
equation. ♦

In review of Example 1.68 in Section 1.16, you see that the steady state
in that example is B(t) = 40, 000. I.e., if your loan balance is $40,000.00, the
bank charges you interest at a rate of .5% per month, and you are repaying
the loan at a rate of $ 200.00 per month, then the principal balance of your
account will stay unchanged. Your payments cover exactly the occuring
interest charges.

Example 1.79. For the logistic law (see Equation (1.59))

dy

dt
= F (y, t) = ay − by2 = y(a− by)
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we find that F (y, t) = 0 if and only if y = 0 or y = a/b. There are two
steady state solutions: yu(t) = 0 and ys(t) = a/b.

Let us interpret these steady state solutions for the specific numerical
values of a = 1/10 and b = 1/10, 000 in Example 1.77. If the initial value
y0 of the population is positive, then the population size will tend to and
stabilize13 at y(t) = a/b = 1, 000. In this sense, ys(t) = a/b = 1, 000 is a
stable steady state solution. It is also referred to as the carrying capacity.
It tells you which size population of the given kind the specific habitat will
support.

If the initial value y0 is negative, then y(t) will tend to −∞ as time
increases. If y0 6= 0, then y(t) will not tend to the steady state y(t) = 0. In
this sense, y(t) = 0 is an unstable steady state. ♦

Exercise 13. Consider the initial value problem

y′(t) = −50 +
1
2
y(t)− 1

2000
y2(t) and y0 = y(0) = 200.(1.66)

To make the problem explicit, you should think of a population of deer in a
protected wildlife preserve. There are no predators. The deer are hunted at
a rate of 50 animals per year. The population has a growth rate of 50% per
year. Reproduction takes place at a constant rate all year round. Finally,
the last term in the differential equation accounts for the competition for
space and food.

1. Use Euler’s method to find the population size over the next 30 years.
Proceed in 1 year steps. Tabulate and plot your results.

2. Guess at which level the population stabilizes.

3. Repeat the first two steps of the problem if hunting is stopped.

4. Repeat the first two steps of the problem if the initial population is
100 animals.

5. Find the steady states of the original equation in which hunting takes
place. I.e., find for which values of y you have that y′ = 0? You will
find two values. Call the smaller one of them Yu and the larger one
Ys. Experiment with different initial values to see which of the steady
states is stable, and which one is unstable.

13The common language meaning of these expressions suffices for the purpose of our
discussion, and the mathematical definition of ‘tends to’ and ‘stabilizes at’ only make these
terms precise.
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Orthogonal Trajectories

Let us explore a different kind of application. Suppose we are given a family
F (x, y, a) = 0 of curves. In Figure 1.16 you see a family of ellipses

Ca : F (x, y, a) = x2 + 3y2 − a = 0.(1.67)

There is one ellipse for each a > 0. We like to find curves Db which in-
tersect the curves Ca perpendicularly. (We say that Db and Ca intersect
perpendicularly in a point (x1, y1), if the tangent lines to the curves at this
point intersect perpendicularly.) We call such a curve Db an orthogonal tra-
jectory to the family of the Ca’s. You also see one orthogonal trajectory in
Figure 1.16.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2
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Figure 1.16: Orthogonal Trajectory to Level Curves

Let us explain where this type of situation occurs. Suppose the curves
Ca are the level curves in a crater. Here a represents the elevation, so that
the elevation is constant along each curve Ca. The orthogonal trajectory
gives a path of steepest descent. A new lava flow which originates at some
point in the crater will follow this path.

Suppose that each ellipse represents an equipotential line of an electro-
magnetic field. The orthogonal trajectory provides you with a path which
is always in the direction of the most rapid change of the field. A charged
particle will move along an orthogonal trajectory.



1.18. NUMERICAL METHODS 61

Suppose a stands for temperature, so that along each ellipse the tem-
perature is constant. In this case the curves are called isothermal lines14.
A heat seeking bug will, at any time, move in the direction in which the
temperature increases most rapidly, i.e., along an orthogonal trajectory to
the isothermal lines.

Suppose a stands for the concentration of a nutrient in a solution. It is
constant along each curve Ca. On their search for food, bacteria will follow
a path in the direction in which the concentration increases most rapidly.
They will move along an orthogonal trajectory.

Example 1.80. Find orthogonal trajectories for the family of ellipses

Ca : F (x, y, a) = x2 + 3y2 − a = 0.(1.68)

Solution: Differentiating the equation for the ellipses, we get

2x + 6y
dy

dx
= 0 or

dy

dx
=
−x

3y
.

The slope of the tangent line to a curve Ca at a point (x1, y1) is −x1
3y1

. If
a curve Db intersects Ca in (x1, y1) perpendicularly, then we need that the
slope of the tangent line to Db at this point is 3y1

x1
. Thus, to find an orthog-

onal trajectory to the family of the Ca’s we need to find functions which
satisfy this differential equation. If we also require that the orthogonal tra-
jectory goes through a specific point (x0, y0), then we end up with the initial
value problem

dy

dx
=

3y
x

and y(x0) = y0.

This is exactly the kind of problem which we solved with Euler’s method. In
this particular example it is not difficult to find solutions for the differential
equation. They are functions of the form y(x) = bx3. The orthogonal
trajectory shown in Figure 1.16 has the equation y = x3/25. There is one
orthogonal trajectory which does not have this form, and this is the curve
x = 0.

Let us apply Euler’s method to solve the problem. Let us find approxi-
mate values for the initial value problem

dy

dx
=

3y
x

and y(1) =
1
25

.

14The idea of isothermal lines, and with this the method in all of these applications,
was pioneered by Alexander von Humbold (1769–1859).
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Use x0 = 1, x1 = 1.2, x2 = 1.4, . . . , x20 = 5.
We set (x0, y0) = (1, 1/25) and calculate (xn, yn) according to the for-

mula

yn = yn−1 + .2
3yn−1

xn−1
for n = 1, 2, . . . , 20.

Without recording the results of this calculation, we graphed the points in
Figure 1.16. ♦

Exercise 14. Consider the family of hyperbolas:

Ca : x2 − 5y2 + a = 0.

There is one hyperbola for each value of a, only for a = 0 the hyperbola
degenerates into two intersecting lines.

1. Graph several of the curves Ca.

2. Find the differential equation for an orthogonal trajectory.

3. Use Euler’s method to find points on the orthogonal trajectory through
the point (3, 4). Use the points x0 = 3, x1 = 3.2, x2 = 3.4, . . . ,
x20 = 7. Plot the points (xn, yn) in your figure.

4. Check that the graph of y(x) = bx−5 is an orthogonal trajectory to the
family of hyperbolas for every b. Determine b, so that the orthogonal
trajectory passes through the point (3, 4), and add this graph to your
figure.
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1.19 Table of Important Derivatives

f(x) f ′(x) Assumptions

xq qxq−1 q a natural number, or x > 0

ex ex x ∈ (−∞,∞)

ln |x| 1/x x ∈ (−∞,∞), x 6= 0

sin x cos x x ∈ (−∞,∞)

cos x − sin x x ∈ (−∞,∞)

tan x sec2 x all x for which tan x is defined

cot x − csc2 x all x for which cot x is defined

secx secx tan x all x for which sec x is defined

cscx − cscx cot x all x for which csc x is defined

arctan x 1
1+x2 x ∈ (−∞,∞)

arcsin x 1√
1−x2

x ∈ (−1, 1), arcsin x ∈ (−π/2, π/2)

arccos x −1√
1−x2

x ∈ (−1, 1), arccos x ∈ (0, π)

arccot x −1
1+x2 x ∈ (−∞,∞), arccot x ∈ (0, π)

arcsec x 1
|x|√x2−1

x < −1 or x > 1, arcsec x ∈ (0, π/2) ∪ (π/2, π)

arccsc x −1
|x|√x2−1

x < −1 or x > 1, arcsec x ∈ (−π/2, 0) ∪ (0, π/2)

Table 1.3: Some Derivatives
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Chapter 2

Global Theory

So far we studied the local behaviour of a function. All concepts related to
the behaviour of a function near a point. In this chapter we will use local in-
formation about a function to draw global conclusions. We will discuss some
uniqueness properties of solutions of differential equations. Then we discuss
geometric properties of graphs, their monotonicity and concavity. We apply
these ideas to the study of extrema of functions. With this information it is
possible to sketch graphs capturing their essential features.

The fundamental result which allows us to do this is referred to as
Cauchy’s mean value theorem. Augustin-Louis Cauchy (1789–1857) was
one of the great mathematicians of the 19-th century. He made major con-
tributions to make calculus a rigorous mathematical theory.

2.1 Cauchy’s Mean Value Theorem

It is useful to make the following

Definition 2.1. Let f(x) be a function which is defined on the interval
[a, b]. Then we call

f(b)− f(a)
b− a

the average rate of change of f over the interval [a, b].

For example, the average rate of change of f(x) = x2 over the interval
[0, 2] is 2. The average rate of change of f(x) = sin x over [0, π/2] is 2/π
and over [0, π] it is 0.

65
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Theorem 2.2 (Chauchy’s Mean Value Theorem). Let f be a real val-
ued function which is defined and continuous on the interval [a, b] and dif-
ferentiable on (a, b), where a < b. Then there exists a number c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.

In words, the theorem asserts that the average rate of change over an
interval is equal to the rate of change at some point in the interval. For
example, the average rate of change of f(x) = x2 over the interval [−2, 1] is
−1, and f ′(−1/2) = −1.

The following special case of the theorem, called Rolle’s theorem (named
after Michel Rolle (1652–1719)), is of particular interest.

Theorem 2.3 (Rolle’s Theorem). Let f be a real valued function which
is defined and continuous on the interval [a, b] and differentiable on (a, b),
where a < b. If f(a) = f(b), then there exists a number c between a and b
(i.e., a < c < b) such that

f ′(c) = 0.

We are not going to say anything about the proof of these two theorems,
except that Cauchy’s theorem and Rolle’s theorem are equivalent (each is
an easy consequence of the other one), and that the proof of both of them
depends heavily on the completeness1 of the real numbers. We are also not
interested in finding the points c, as they occur in the two theorems. We
are interested in more general consequences.

Corollary 2.4. Let f be a real valued function which is defined and contin-
uous on an interval I. If f ′(x) = 0 for all interior points x of I, then f is
constant on this interval. In other words, there exists a number d such that
f(x) = d for all x ∈ I.

Proof. A different formulation of the claim is that f(a) = f(b) for all a,
b ∈ I. We prove this statement using Cauchy’s theorem. If f(a) 6= f(b),
then a 6= b and there exists some c ∈ (a, b), such that

f ′(c) =
f(b)− f(a)

b− a
6= 0.

But this contradicts the assumption that f ′(c) = 0 for all c ∈ I, and the
corollary is proved.

1We discussed this property of the real numbers in Section 1.1.
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We are going to use the following corollary frequently.

Corollary 2.5. Let h and g be functions which are defined and continuous
on an interval I. If h′(x) = g′(x) for all x ∈ I, then h and g differ by a
constant, i.e., there exists a number d such that

h(x) = g(x) + d

for all x ∈ I.

Proof. Apply the previous corollary to f(x) = h(x)− g(x).

Definition 2.6. Suppose the function f(x) is defined on the interval I. We
call a function F (x) with domain I an antiderivative of f if F ′(x) = f(x)
for all x ∈ I.

Using this notion, we can reformulate Corollary 2.5.

Corollary 2.7. Suppose h and g are antiderivatives of a function f , defined
on an interval. Then h and g differ by a constant.

2.2 Unique Solutions of Differential Equations

Corollary 2.4 implies

Proposition 2.8. If the function F (x) is defined on an interval I and
F ′(x) = 0 for all x ∈ I, then F (x) is constant on I.

In other words, on intervals the only solutions of the differential equation
F ′(x) = 0 are the constant functions.

More generally, if you like to find all antiderivatives F (x) of a function
f(x) on an interval, then it suffices to find one antiderivative H(x). Any
antiderivative F (x) is of the form H(x) + c where c is a constant. The
constant c is referred to as integration constant. For the time being you
depend on being able to guess such a function H(x). By differentiating
H(x) you can check whether you guessed right.

For example, any antiderivative F (x) of the function f(x) = 2x on the
real line (−∞,∞) is of the form F (x) = x2 + c where c is a constant. Any
antiderivative F (x) of the function f(x) = sec2 x on the interval (−π/2, π/2)
is of the form F (x) = tan x + c.

Typically, the integration constant is determined by an initial condition.
Suppose we like to solve the initial value problem

f ′(x) = cos x and f(0) = 1.
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Our first conclusion is that f(x) = sin x + c. This follows from the above
because (sin x + c)′ = cos x. Next we substitute x = 0 in the equation.
Then we see that f(0) = c = 1. The solution of the initial value problem is
f(x) = sin x + 1.

Of particular importance to our discussion of expenential growth and
decay is

Proposition 2.9. Every solution f(x) of the differential equation

f ′(x) = af(x)

on an interval is of the form f(x) = ceax for some constant c.

Proof. We asserted in (1.19), and will eventually prove, that all functions of
the form f(x) = ceax satisfy the differential equation. We want to see that
these are the solutions.

Let f(x) be any function which satisfies the differential equation on some
interval. Consider the function

h(x) = f(x)e−ax.

As a product of differentiable functions, h is differentiable. Its derivative is

h′(x) = f ′(x)e−ax − af(x)e−ax = af(x)e−ax − af(x)e−ax = 0.

Corollary 2.4 tells us that h(x) is a constant function. Calling the constant
c we find that

f(x) = ceax.

This means that all solutions of the differential equation f ′(x) = af(x) are
of the form f(x) = ceax, where c is a constant.

Proposition 2.10. The initial value problem

f ′(x) = af(x) and f(x0) = C

has a unique solution on an interval containing x0. In fact

f(x) = Cea(x−x0).

Proof. By the previous proposition we know that the solution is of the form
f(x) = ceax for some c. Substituting the initial condition we obtain

C = f(x0) = ceax0 .

Thus c = Ce−ax0 and f(x) = ceax = Ce−ax0eax = Cea(x−x0).
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Remark 4. The uniqueness of the solution of an initial value problem as in
the previous proposition is not only of theoretical importance. Imagine that
you study the growth rate of a strain of bacteria, as we did in Example 1.64
on page 41. Before you can publish your result, it must be certain that your
experiment can be reproduced at a different time in a different location.
That is a requirement which any experiment in science must satisfy. If there
is more than one mathematical solution to your problem, then you have to
expect that the experiment can go either way, and this would invalidate your
experiment.

2.3 The First Derivative and Monotonicity

One of the interesting properties of a function is whether it is increasing or
decreasing. We might want to find out whether the part of a population
which is infected with a disease is increasing or decreasing. We might want
to know how the level of pollution in a body of water is changing. The first
derivative of a function gives us information of this kind.

2.3.1 Monotonicity on Intervals

Recall that a function f is called increasing if f(b) > f(a) whenever b > a.
It is called decreasing if f(b) < f(a) whenever b > a. A function is called
monotonic if it is either increasing or decreasing.

Theorem 2.11. Suppose that the function f is defined and continuous on
the interval I.

1. If f ′(x) > 0 for all x ∈ I, then f is increasing on I.

2. If f ′(x) < 0 for all x ∈ I, then f is decreasing on I.

3. More generally, the conclusions in (1) and (2) still hold if in each
finite interval J ⊂ I there are only finitely many points at which the
assumption on f ′(x) is not satisfied.2

Proof. We show (1). Let a and b be points in I, and suppose that a < b.
Cauchy’s theorem says that there exists a point c, a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
.

2It is permissable that f is not differentiable at a few points in J , or that f ′(x) = 0.
It is not possible that f ′(x) < 0 at some point in the interval, and f(x) is increasing on
the interval.
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We have that f ′(c) > 0 and b − a > 0, and it follows that f(b)− f(a) > 0.
This means that f(b) > f(a). The proof of the second claim is similar. We
leave it and the generalization of both statements to the reader.

For example, log′2 x =
(

ln x
ln 2

)′
= 1

x ln 2 > 0 for all x ∈ (0,∞). In the
computation we used (1.19), Theorem 1.36, and that ln 2 > 0. It follows
from Theorem 2.11 that log2 x is increasing on x ∈ (0,∞). You see part of
the graph of the function in Figure 1.8.

The exponential function expa x = ax is increasing on (−∞,∞) if a > 1
and decreasing if 0 < a < 1. To see this, observe that ax = ex ln a and
d
dxax = (ln a)ax. Furthermore, ax > 0 and ln a > 0 if a > 1 and ln a < 0
if 0 < a < 1. Now Theorem 2.11 implies our assertion. You may also
want to have a look at the graph of the exponential function with base 2 in
Figure 1.7.

The function f(x) = 1/x is defined and differentiable on the set of all
nonzero real numbers, and its derivative is f ′(x) = −1/x2. In particular
f ′(x) < 0 for all nonzero real numbers. According to Theorem 2.11, f(x)
is decreasing on the interval (−∞, 0), and that f(x) is decreasing on the
interval (0,∞). The function is not decreasing on the union of the two
intervals. The example illustrates that it is crucial in Theorem 2.11 that we
deal with functions which are defined and differentiable on an interval.

The function f(x) = tan x, defined on (−π/2, π/2), has as its deriva-
tive f ′(x) = sec2 x, and the derivative is positive. Consequently, f(x) is
increasing on (−π/2, π/2). Its inverse g(x) = arctan x, defined on (−∞,∞),
has as its derivative g′(x) = 1

1+x2 , which is positive on (−∞,∞), so that
g(x) = arctan x is increasing on (−∞,∞). As a general priciple, one may
show that the inverse of an increasing function is increasing.

Example 2.12. For a three dimensional solid we set E = A/V , where
A denotes the surface area and V the volume. For example, for a ball
E(r) = (4πr2)/(4

3πr3) = 3/r, where r denotes the radius. Then E′(r) < 0.
The same principle holds for other shapes, E decreases as we enlarge the
solid without changing its shape. What does this have to do with the size
of animals?

Warm blooded animals living in cold climates need to preserve their body
temperature. The total amount of heat stored in the body is proportional to
the volume, while the heat loss is proportional to the surface area. The ratio
of volume to surface area increases as the animal gets larger, so that for warm
blooded animals it is of advantage to be large if they live in cold climates.
In hot climates they need to give off heat, so that it is of advantage to be
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small. Natural selection (Darwinism) should favor the larger specimens of
a warm blooded species in a cold climate and smaller ones in a hot climate.
You can observe this phenomenon in real life.

For cold blooded animals the converse holds. They absorbe heat so
that they body reaches a temperature at which they can be active. In cold
climates it helps to be small, because then the surface area is relatively large,
compared to the volume. In hot climates cold blooded animals can afford to
be large, as it is easy to reach and maintain the temperature at which they
can be active. The argument is again consistent with real life.

Needless to say, there are other mechanisms to increase the surface area
of a body than decreasing its size, and the maintenance of the body temper-
ature is only one factor which influences the size of specimens of a species.
Larger animals need more food, are stronger, cannot hide so well, and are of-
ten less agile. All of these factors need to be taken into account to determine
the optimal size of an animal. ♦

So far we have only discussed examples where we used (1) and (2) of
Theorem 2.11. Let us show how to use the conclusion in (3). To apply it
we need to determine intervals on which a function does not change signs.
We recall a procedure which works well for continuous functions.

Definition 2.13. Suppose f(x) is a function. We call a point x0 on the
real line exceptional if either f(x0) = 0 or f(x0) is not defined.

The following result is an immediate consequence of the Intermediate
Value Theorem, see Theorem 1.16 on page 8. Expressed casually it says
that a continuous function can change signs only at exceptional points.

Proposition 2.14. Suppose f(x) is continuous and f(x) has no exceptional
points in the interval (x0, x1). Then f(x) > 0 for all points in the interval
(x0, x1), or f(x) < 0 for all points in the interval (x0, x1). In particular, if
f(x) is positive at one point in the interval, then it is positive at all points
in the interval. If f(x) is negative at one point in the interval, then it is
negative at all points in the interval.

Example 2.15. For example, consider the function

f(x) =
x2(x2 − 4)

x2 + 2x− 15
=

x2(x− 2)(x + 2)
(x− 3)(x + 5)

.

The zeros of the numerator, and with this the zeros of f(x), are x = 0,
x = 2, and x = −2. The zeros of the denominator, i.e., the points where
f(x) is not defined, are x = 3 and x = −5.
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According to the proposition, the sign of f(x) remains unchanged on
each of the intervals (−∞,−5), (−5,−2), (−2, 0), (0, 2), (2, 3) and (3,∞).
Counting signs of the factors in the expression for f(x), we see f(x) is
positive on the interval (−∞,−5), negative on (−5,−2), positive on (−2, 0)
and on (0, 2), negative on (2, 3), and positive on (3,∞). You see that the
sign changes at some, but not all, exceptional numbers. ♦

Exercise 15. Find intervals on which the following functions do not change
signs. Decide whether the functions are positive or negative on these inter-
vals.

(1) f(x) = x3 − x2 − 5x− 3 (2) g(x) =
x

x3 + 5x2 − 4x− 20
.

We are ready to discuss the monotonicity of functions whose derivative
vanishes at some points.

Example 2.16. Find intervals of monotonicity for the function

f(x) = 3x2 + 5x− 4.
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Figure 2.1: A quadratic polyno-
mial, f(x) = 3x2 + 5x− 4
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Figure 2.2: A cubic polynomial,
p(x) = x3 − 3x2 − 9x + 3

Solution: We graphed the function in Figure 2.1. Its derivative is
f ′(x) = 6x + 5. In particular, f ′(x) > 0 if x ∈ (−5/6,∞). So f ′(x) > 0
for all points x ∈ [−5/6,∞), except at x = −5/6. Theorem 2.11 (3) says
that f is increasing on the interval [−5/6,∞). By a similar argument, f is
decreasing on the interval (−∞,−5/6]. ♦
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Example 2.17. Find intervals of monotonicity for the degree three poly-
nomial (for a graph see Figure 2.2)

p(x) = x3 − 3x2 − 9x + 3

Solution: The function is defined and differentiable on the real line. Its
derivative is

p′(x) = 3x2 − 6x− 9 = 3(x2 − 2x− 3) = 3(x− 3)(x + 1).

Counting the signs of the factors we see that p′(x) is positive on (−∞,−1)
and on (3,∞). We conclude that p(x) is increasing on the interval [3,∞)
and that it is increasing on the interval (−∞,−1]. The derivative is negative
on the interval (−1, 3). The theorem implies that p(x) is decreasing on the
interval [−1, 3]. ♦
Example 2.18. Find intervals of monotonicity for the rational function

f(x) =
x2 + 3x
x− 1

.

Solution: The simplified expression for the derivative of f is

f ′(x) =
(x + 1)(x − 3)

(x− 1)2
.

We see that the exceptional points for f ′(x) are x = 1, x = −1 and x = 3. We
conclude that f ′(x) does not change signs on the intervals (−∞,−1), (−1, 1),
(1, 3), and (3,∞). Counting the signs of the factors of f ′(x), we conclude
that f ′(x) > 0 on the intervals (−∞,−1) and (3,∞), and f ′(x) < 0 on the
intervals (−1, 1) and (1, 3). Observe that f(x) is defined and differentiable
on the entire real line with the only exception of x = 1. We conclude that
f(x) is increasing on the (−∞,−1] and [3,∞). The function is decreasing
on the intervals [−1, 1) and (1, 3]. ♦
Example 2.19. Find intervals on which the function

f(x) = sin 2x + 2 sin x

is monotonic. Restrict your discussion to the interval [0, 2π].
Solution: We differentiate the function and rewrite the expression for

the derivative so that it is easier to find its exceptional points.

f ′(x) = 2 cos 2x + 2cos x

= 2[2 cos2 x + cos x− 1]

= 4(cos x + 1)
(

cos x− 1
2

)
.
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To see the second equality we used that cos 2x = 2cos2 x − 1. Then we
solved the quadratic equation in terms of cos x. We find exceptional points
where cos x = −1 (i.e., x = π) and where cos x = 1

2 (i.e., x = π
3 and x = 5π

3 ).
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Figure 2.3: A function and its derivative.

Observe that f is differentiable on [0, 2π], and that f ′(x) 6= 0 at the end
points of this interval. This provides us with the intervals [0, π/3), (π/3, π),
(π, 5π/3) and (5π/3, 2π] on which f ′ does not change sign. Checking the
sign of f ′ (at one point) in each of the intervals, we find that f ′(x) > 0 for
x ∈ [0, π/3) and x ∈ (5π/3, 2π], and f ′(x) < 0 for x ∈ (π/3, π) and (π, 5π/3).
We conclude that f is increasing on the interval [0, π/3] and [5π/3, 2π]. The
function is decreasing on the interval [π/3, 5π/3], and in this interval there
are three points at which f ′(x) is not positive.

You may confirm the calculation by having a look at Figure 2.3. There
you see the graph of the function (solid line) and the graph of its derivative
(dashed line). As you see, wherever f ′(x) is positive, there f(x) is increasing.
Wherever f ′(x) is negative, there f(x) is decreasing. ♦

Exercise 16. Find intervals on which the function f increases and intervals
on which f decreases. In the last two problems, (g) and (h), restrict yourself



2.3. THE FIRST DERIVATIVE AND MONOTONICITY 75

to the interval [0, 2π].

(a) f(x) = 3x2 + 5x + 7

(b) f(x) = x3 − 3x2 + 6
(c) f(x) = (x + 3)/(x − 7)
(d) f(x) = x + 1/x

(e) f(x) = x3(1 + x)

(f) f(x) = x/(1 + x2)
(g) f(x) = cos 2x + 2cos x

(h) f(x) = sin2 x−
√

3 sin x

2.3.2 Monotonicity at a Point

It is quite natural to ask what it means that a function is increasing at a
point, and how this concept is related to the one of being increasing on an
interval. We address both questions in this subsection.

Definition 2.20. Suppose f is a function and c is an interior point of its
domain. We say that f is increasing at c if, for some d > 0,

f(x) < f(c) for all x ∈ (c− d, c) and f(x) > f(c) for all x ∈ (c, c + d).

We say that f is decreasing at c if this statement holds with the inequalities
reversed.

Expressed informally, to the left of c the function is smaller and to the
right of c it is larger than at c, at least for a while.

Being increasing or decreasing at a point c is a local property. We are
making a statement about the behavior of the function on some open interval
which contains c. Being increasing on an interval is a global property. For
the global property the interval is given to us. For the local property we may
chose the, possibly rather small, interval. The global property has to hold
for any two points in the given interval. For the local property we compare
f(x) to f(c) where c is fixed and x is any point in an open interval around
c which we may chose.

Theorem 2.21. Suppose f is a function which is defined on an open inter-
val I. Then f is increasing (decreasing) on I if and only it it is increasing
(decreasing) at each point in I.

This theorem establishes the relation between the local and the global
property. The ‘only if’ part is not difficult to show, but the ‘if’ part uses
some deeper facts about finite closed intervals. Our second result gives us a
valuable tool to detect monotonicity of functions at a point.
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Proposition 2.22. Let f be a function and c an interior point of its do-
main. If f is differentiable at c and f ′(c) > 0, then f is increasing at c. If
f ′(c) < 0, then f is decreasing at c.

Remark 5. A function does not have to be differentiable to be increasing.
Graph the function f(x) = 2x+ |x| to convince yourself of this fact. A func-
tion can be differentiable and increasing at a point x, even if the assumptions
of Proposition 2.22 do not hold, i.e., f(x) = x3 is increasing at x = 0, but if
f ′(0) = 0. A function can also be increasing at a point x, but there is not
open interval which contains x such that the function is increasing on this
interval.

Remark 6. The ideas of of a function being increasing or decreasing at
a point may be generalized to cover domains of functions which are half-
closed or closed intervals, and where we like to make a statement about the
behavior of a function at an endpoint. We have no specific needs for such
statements, but the motivated reader is encouraged to explore them.

2.4 The Second Derivative and Concavity

We like to capture the property of a graph being bent upwards or downwards.
Secant lines will either be required to lie above or below the graph, and the
rates of change will be either increasing of decreasing. These properties can
be described globally over intervals and locally at points. You may use the
graphs in Figures 2.4 and 2.5 as illustrations of the discussion.
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Figure 2.4: Concave Up
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Figure 2.5: Concave Down
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2.4.1 Concavity on Intervals

Let f(x) be a function and let (a, f(a)) and (b, f(b)) be two distinct points
on its graph. The line through these two points is

l(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

If we restrict l(x) to x ∈ [a, b], then we get the secant line through the two
point, i.e., the line segment joining the two points.

Definition 2.23. Let f be a function which is defined on an interval I.
We say that f is concave up on I if f(c) < l(c) for all a, b in I and
c ∈ (a, b). Here l(x) is the secant line through (a, f(a)) and (b, f(b)). The
inequality expresses that between the points a and b the secant line lies above
the graph. We say that f is concave down on I if f(c) > l(c) for all a, b
in I and c ∈ (a, b). The inequality expresses that between the points a and b
the secant line lies below the graph.

We state a theorem which provides you with assumptions under which a
function is concave up or down. We will not provide a proof of the theorem.

Theorem 2.24. Let f be a function which is defined on an interval I.

1. Suppose that f(x) is differentiable on I. If f ′(x) is increasing on I,
then f(x) is concave up on I. If f ′(x) is decreasing on I, then f(x) is
concave down on I.

2. Suppose that f(x) is twice differentiable3 on I. If f ′′(x) > 0 for all x
in I, then f(x) is concave up on I. If f ′′(x) < 0 for all x in I, then
f(x) is concave down on I.

3. More generally, the conclusions in (2) still hold if in each finite interval
J ⊂ I there are only finitely many points at which the assumption
f ′′(x) > 0, resp. f ′′(x) < 0, is not satisfied.

For example, the function shown in Figure 2.4 is q(x) = x2− 2x + 3. Its
second derivative is q′′(x) = 2 > 0. Theorem 2.24 (2) says that q is concave

3Strictly speaking, so far we can consider being ‘twice differentiable’ only for functions
which are defined on open intervals. More generally, we proceed as in Section 1.11. We say
that f(x) is twice differentiable on I , if f(x) extends to a function F (x) which is defined
on an open interval J which contains I , and F (x) is twice differentiable on J . The second
derivative will be unique at all points in I if I is not empty and does not consist of exactly
one point.
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up on (−∞,∞). The function shown in Figure 2.5 is g(x) = −x2 + 5x− 1,
and its second derivative is g′′(x) = −2 < 0. Theorem 2.24 (2) says that q
is concave down on (−∞,∞).

The function ln x is concave down on the interval (0,∞). To see this, you
may use that ln′′(x) = −1/x2 < 0 on (0,∞) and apply Theorem 2.24 (2).
Alternatively, you may note that the derivative ln′ x = 1/x is decreasing on
(0,∞) and apply Theorem 2.24 (1). The exponential function exp(x) = ex is
concave up on (−∞,∞). To see this, you may note that exp′′(x) = exp(x) >
0 and apply Theorem 2.24 (2). You may also use that exp′(x) is increasing
on the real line, and then quote Theorem 2.24 (1) to derive the desrired
conclusion. Finally, you may observe that a function is concave up if its
inverse is convave down4. So, ln x being concave down implies that exp(x)
is concave up.

Let us look at examples where we apply condition Theorem 2.24 (3).

Example 2.25. Study the concavity properties of the function

p(x) = x3 − 3x2 − 9x + 3.

Solution: You find the graph of this function in Figure 2.2. Its second
derivative is p′′(x) = 6x−6 = 6(x−1). We see that p′′(x) > 0 for x ∈ (1,∞),
and p′′(x) < 0 for x ∈ (−∞, 1). This means that p′′(x) > 0 for all x ∈ [1,∞)
with only one exception, x = 1. Theorem 2.24 (3) tells us that p(x) is
concave up on the interval [1,∞). Similarly, p′′(x) < 0 for x ∈ [−∞, 1) with
only one exception, x = 1. One deduces that f(x) is concave down on the
interval (−∞, 1]. ♦

Consider the function tan x. You may verify that tan′′ x = 2 sec2 x tan x.
In particular, tan′′ x < 0 for x ∈ (−π/2, 0) and tan′′ x > 0 for x ∈ (0, π/2).
Theorem 2.24 (3) implies that tan x is concave down on (−π/2, 0] and con-
cave up on [0, π/2). You may confirm these statements visually by inspecting
a graph of the tangent function. You are invited to study the concavity of
the other trigonometric and hyperbolic functions.

Remark 7. You may consider the spread of a desease. Denote the number
of infected people by I(t). It may be scary if I ′(t) > 0, i.e., I(t) increases.
It is worse, and often true in the early stages of an epedemic, if I ′′(t) > 0.

4If f and g are inverses of each other, then the graph of one of the functions is obtained
from the one of the other one by reflection at the diagonal x = y. In this process, secant
lines which are above the graph turn into secant lines below the graph. Thus, if f is
concave up, then g is concave down, and vice versa.
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This means that I ′(t) increases, and the desease spreads at an increasing
rate. Medical professional will not necessarily wait for the time when I(t),
the number of infected people, starts decreasing. When I ′′(t) turns negative,
then I ′(t) decreases. The spread or the desease slows. One may hope that
eventually I ′(t) becomes negative, so that the actual number of sick people
decreases. The point at which I ′′(t) changes signs from being positive to
being negative may be considered the turning point in the spread of the
desease. One of the recent presidents was confused by a subtle argument of
this kind5.

Let us look at this phenomena in a concrete example. Earlier we con-
sidered the logistic equation

y′ = ay − by2.

See Example 1.75 and the graph of a solution of this diferential equation in
Figure 1.15. Use implicit differentiation to find the second derivative:

y′′ = ay′ − 2byy′ = (a− 2by)y′.

We see that y′′ = 0 if y′ = 0 or y = a/(2b). The first case occurs if y = 0
or y = a/b. We called y = a/b the carrying capacity of the system, and it
was the stable equilibrium point. The inflection occurs when y is half the
carrying capacity. As long as y is less than a/(2b), the population grows at
an increasing rate. If a/(2b) < y < a/b, then growth slows. You see the
turning point in the graph in Figure 1.15. For a while the population seems
to explode, but after a while it levels off so that it does not exceed a the
carrying capacity.

Exercise 17. Find intervals on which the following functions are concave
up, resp., concave down.

1. f(x) = x3 − 4x2 + 8x− 7

2. g(x) = x4 + 2x3 − 3x2 + 5x− 2

3. h(x) = x + 1/x

4. i(x) = 2x4 − x2

5. j(x) = x/(x2 − 1)

6. k(x) = 2 cos2 x− x2 for x ∈ [0, 2π].
5During a televised presidential debate, one of the candidates said (see the New York

Times from October 8th, 1984, page B6): “Some of these facts and figures just don’t add
up. Yes, there has been an increase in poverty but it is a lower rate of increase than it was
in the preceding years before we got here. It has begun to decline, but it is still going up.”
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2.4.2 Concavity at a Point

The notion of being concave up or down was defined for functions which are
defined on intervals. Still, we got a picture how the function has to look
like near a point, and this is the behavior which we like to capture in a
definition.

Definition 2.26. Let f be a function and c an interior point 6 of its do-
main. We say that f is concave up, resp., concave down, at c if there exists
an open interval I and a line l, called a support line, such that l(c) = f(c)
and

f(x) > l(x), resp., f(x) < l(x),

for all x ∈ I with x 6= c.
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Figure 2.6: Concave up at •
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Figure 2.7: Concave down at •

In other words, we are asking for a line l(x), such that the graph lies
on one side of the graph, at least near c. If the graph is above the line,
then the function is concave up, if it is below, then the function is concave
down. We assume that the graph and the line agree at c. You see this
situation illustrated in two generic pictures in Figures 2.6 and 2.7. One
shows a function which is concave up at the indicated point, one shows a
function which is concave down.

Our next theorem tells us how to detect concavity, and it tells us how
to find the support line if the function is differentiable.

6The idea of an interior point was defined in Definition 1.18 on page 10.
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Theorem 2.27. Let f be a function and c an interior point of its domain.

1. If f ′ is increasing at c or if f ′′(c) > 0, then f is concave up at c.

2. If f ′ is decreasing at c or if f ′′(c) < 0, then f is concave down at c.

3. If f is differentiable and concave up or down at c, then there is only
one support line, and this line is the tangent line to the graph of f at
c.

The sign of the second derivative of a functions tells us whether a function
is concave up or down at a point. If the second derivative is zero, then the
test is inconclusive. The function can be concave up, down, or neither.
In general, there can be many support lines at any given point, but if the
function is differentiable at c, then the support line is unique. It is the
tangent line. So, for a differentiable function which is concave up or down
at a point, we can draw the tangent line easily. We just hold the ruler
against the graph.

For example, the function f(x) = x5−7x4 +2x3 +2x2−5x+4 is concave
down at x = 2 because f ′′(2) = −148 < 0.

To relate concavity properties on an interval to those at each point in
the interval we state, without proof, the following theorem.

Theorem 2.28. Let f be a function which is defined on an open interval
(a, b). Then f is concave up (resp., down) on (a, b) if and only if f is concave
up (resp., down) at each point in (a, b).

2.5 Local Extrema and Inflection Points

We are going to discuss two types of points which are particularly important
in the discussion of (graphs of) functions. As we like to apply local properties
of the function, we focus on interior points is the domain of the function.

Definition 2.29 (Local Extrema). Let f be a function and c an interior
point in its domain7. We say that f has a local maximum, resp. minimum,
at c if

f(c) ≥ f(x), resp. f(c) ≤ f(x),

for all x in some open interval I around c. In this case we call f(c) a local
maximum, resp. minimum, of f . A local extremum is a local maximum or
minimum.
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Figure 2.8: A local minimum
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Figure 2.9: An Inflection Point

In other words, f has a local maximum of f(c) at c, if f(c) is the largest
value compared the values at points near c. The function shown in Figure 2.8
has a local minimum at x = −1. We will study tests which allow us find local
extrema soon. We do not need any test to see that f(x) = |x| has a local
minimum at x = 0, and f(x) = −(x − 1)2 has a local maximum at x = 1.
The vertex of a parabola is always a local extremum, a local minimum if the
coefficient of x2 is positive, and a local maximum if the coefficient of x2 is
negative.

Definition 2.30 (Inflection Points). Let f be a function and c an inte-
rior point of its domain. We call c an inflection point of f if the concavity
of f changes at c. I.e., for some numbers a and b with a < c < b, we have
that f is concave up on the interval (a, c] and concave down on [c, b), or vice
versa.

Soon we will develop tests which detect inflections points. No test is
required to see that f(x) = tan x has an inflection point at x = 0. The
function is concave down on the interval (−π/2, 0] and concave up on the
interval [0, π/2). So the concavity changes at x = 0 and that means that
there is an inflection point at x = 0. You see the graph of this function in
Figure 2.9.

7According to Definition 1.18 on page 10 this means that f(x) is defined for all x in
some open interval around c.
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2.6 Detection of Local Extrema

We will discuss how to detect local extrema. The first result excludes many
points. Typically, there are very few points where local extrema can occur.

Theorem 2.31. Let f be a function and c an interior point of its domain. If
f is differentiable at c and f ′(c) 6= 0, then f does not have a local extremum
at c. In other words, if f has a local extremum at c, then f is either not
differentiable at c or f ′(c) = 0.

To have an abbreviation for the points which are recognized as important
in this theorem, it is customary to say:

Definition 2.32 (Critical Points). Let f be a function and c an interior
point of its domain. We say that c is a critical point of f if f is differentiable
at c and f ′(c) = 0, or if f is not differentiable at c.

Theorem 2.31 provides us with a necessary condition. If a function has
a local extremum at c, then c is a critical point of the function. No local
extrema can occur at points which are not critical. The test does not give
a sufficient condition for a local extremum. If c is a critical point of the
function, then the function need not have a local extremum at c. It makes
sense to introduce one more word.

Definition 2.33 (Saddle Points). Let f be a function and c an interior
point of its domain. We say that c is a saddle point of f if f is differentiable
at c and f ′(c) = 0, but f does not have a local extremum at c.

Proof of Theorem 2.31. Suppose that f is differentiable at c and f ′(c) > 0.
Proposition 2.22 on page 76 tells us that there exists some positive number
d, such that f(x) < f(c) for all x ∈ (c − d, c), and f(x) > f(c) for all
x ∈ (c, c + d). So, there are points x to the left of and arbitrarily close to c
such that f(x) < f(c), and there are points x to the right of and arbitrarily
close to c such that f(x) > f(c). This means, by definition, that f does not
have a local extremum at c. If f ′(x) < 0, then the same argument applies
with inequalities reversed. If f ′(c) 6= 0, then either f ′(c) > 0 or f ′(c) < 0,
and in neither case we have an extremum at c.

Neither the exponential function nor the logarithm function have local
extrema. To see this, observe that these functions are differentiable on their
domain, and their derivatives exp′ x = exp x and ln′ x = 1/x are every-
where nonzero. These functions have no critical points, and according to
Theorem 2.31 they have no local extrema.
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Example 2.34. Find the local extrema of the function

q(x) = x2 − 2x + 3.

Solution: The function is differentiable for all real numbers x, and

q′(x) = 2x− 2 = 2(x− 1).

So q′(x) 6= 0 if x 6= 1. The only point at which we can have a local extremum,
i.e., the only critical point, is x = 1. If we write the function in the form

q(x) = (x− 1)2 + 2,

then we see that q does indeed that a local minimum at x = 1. You should
confirm this result by having a look at Figure 2.10, where this function is
graphed. ♦
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Figure 2.10: A local minimum
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Figure 2.11: A saddle point

Example 2.35. Show that the function g(x) = x3 has a saddle point at
x = 0.

Solution: The function g(x) is everywhere differentiable, and its only
critical point is at x = 0, which is the only zero of g′(x) = 3x2. Obviously,
g(x) > 0 for all x ∈ (0,∞) and g(x) < 0 for all x ∈ (−∞, 0). This means
that there is no local extremum at x = 0. As g′(0) = 0 and there is no
local extremum at x = 0, the function has a saddle point at this point. This
saddle point is shown in Figure 2.11. ♦
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Let us formulate a criterion which confirms that a function has a local
extremum at a point c. It gives us a sufficient condition for a local extremum
at c.

Theorem 2.36. Suppose c is an interior point of the domain of a function
f , and suppose that for some d > 0 the function is increasing on (c−d, c] and
decreasing on [c, c + d). Then f has a local maximum at c. If the function
is decreasing on (c − d, c] and increasing on [c, c + d), then f has a local
minimum at c.

Taking advantage of the information provided by the first derivative, we
obtain the following test.

Theorem 2.37 (First Derivative Test). Suppose f is a function which
is defined and differentiable on (c − d, c + d) for some d > 0, and c is a
critical point.

1. If f ′(x) > 0 for all x ∈ (c − d, c) and f ′(x) < 0 for all x ∈ (c, c + d),
then f has a local maximum at c.

2. If f ′(x) < 0 for all x ∈ (c − d, c) and f ′(x) > 0 for all x ∈ (c, c + d),
then f has a local minimum at c.

3. If f ′(x) > 0 for all x ∈ (c−d, c)∪(c, c+d), then f has a saddle point at
c. This conclusion also holds if f ′(x) < 0 for all x ∈ (c−d, c)∪(c, c+d).

Let us illustrate the use of the theorem with an example.

Example 2.38. Find the local extrema of the function

f(x) = x3 − 3x2 + 2x + 2.

Solution: We differentiate f(x) and express f ′(x) as a product of linear
factors:

f ′(x) = 3x2 − 6x + 2 = 3

[
x−

(
1 +

√
3

3

)][
x−

(
1−

√
3

3

)]

It is easy to determine where the factors are zero, positive and negative. We
conclude that f ′(x) = 0 if x = 1 ± √3/3, f ′(x) is positive on the intervals
(−∞, 1 − √3/3) and (1 +

√
3/3,∞), and f ′(x) is negative on the interval

(1 − √3/3, 1 +
√

3/3). You can see graphs of f and f ′ in Figures 2.12 and
2.13
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Figure 2.12: f(x) = x3 − 3x2 +
2x + 2
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Figure 2.13: f ′(x) = 3x2 − 6x + 2

The only only critical points of f are at x = 1±√3/3, and these are the
only points where a local extremum can occur. Based on the sign of f ′(x) on
intervals to the left and right of these two critical points we see that f has
a local maximum at x = 1 −√3/3 and a local minimum at x = 1 +

√
3/3.

♦

Exercise 18. Find the local extrema of the following function:

(1) f(x) =
x2 + 3x
x− 1

(2) g(x) = sin 2x + 2 sin x for x ∈ [0, 2π].

Hint: We discussed the monotonicity properties of these functions in Exam-
ples 2.18 and 2.19.

Exercise 19. Find the local extrema of the following functions. In the last
two problems, (g) and (h), restrict yourself to the interval [0, 2π].

(a) f(x) = 3x2 + 5x + 7

(b) f(x) = x3 − 3x2 + 6
(c) f(x) = (x + 3)/(x − 7)
(d) f(x) = x + 1/x

(e) f(x) = x3(1 + x)

(f) f(x) = x/(1 + x2)
(g) f(x) = cos 2x + 2cos x

(h) f(x) = sin2 x−
√

3 sin x

Hint: You discussed the intervals of monotonicity for these functions in
Exercise 16.
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We may use the second derivative to detect the change of sign of the first
derivative, as it is called for in the assumptions in Theorem 2.37.

Theorem 2.39 (Second Derivative Test). Let f be a function and c an
interior point in its domain. Assume also that f ′(c) and f ′′(c) exist and that
f ′(c) = 0. If f ′′(c) > 0, then f has a local minimum at c. If f ′′(c) < 0, then
f has a local maximum at c.

To apply the theorem to the detection of the local extrema of a differ-
entiable function f(x), we differentiate f and find the critical points, the
zeros of f ′(x). Then we differentiate f ′(x). The sign of f ′′ at the critical
points tells us whether we found a local minimum or a local maximum. If
f ′(c) = f ′′(c) = 0, then the test is inconclusive. There may or may not be a
local extremum at c. Furthermore, the function f can have a local extremum
at c, and the assumptions of the test are not satisfied. In this sense, the test
provides us with a sufficient condition for the existence of a local extremum
at a point. It does not provide us with a necessary condition.

Example 2.40. Find the local extrema of the function (for a graph, see
Figure 2.2 on page 72)

p(x) = x3 − 3x2 − 9x + 3.

Solution: We calculated the first derivative,

p′(x) = 3x2 − 6x− 9 = 3(x + 1)(x − 3).

The critical points of the function are x = −1 and x = 3. Furthermore,

p′′(x) = 6x− 6 = 6(x− 1).

In particular, p′′(−1) = −12 and p′′(3) = 12. The second derivative test
tells us that we have a local maximum at x = −1, because this is a critical
point and p′′(−1) < 0. We also have a local minimum at x = 3 because at
this critical point the second derivative of the function is positive. ♦

Proof of the Second Derivative Test. First, let us assume that f ′(c) = 0 and
f ′′(c) > 0. We will show that f has a local minimum at c. The assumption
that f ′(c) = 0 means that the tangent line to the graph of f at (c, f (c))
is horizontal. Its equation is l(x) = f(c). The assumption that f ′′(c) > 0
means that f is concave up at c (see Theorem 2.27 (1)). Spelled out explicitly
this means that

f(x) > l(x) = f(c)
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for some positive number d and for all x ∈ (c − d, c) ∪ (c, c + d). In other
words, f has a local minimum at c.

The proof that f has a local maximum at c if f ′(c) = 0 and f ′′(c) < 0 is
similar. We leave it to the reader.

Exercise 20. Find the critical points and the local extrema.

(a) f(x) = 4x2 − 7x + 13

(b) f(x) = x3 − 3x2 + 6
(c) f(x) = x + 3/x

(d) f(x) = x2(1− x)

(e) f(x) = |x2 − 16|
(f) f(x) = x2/(1 + x2).

2.7 Detection of Inflection Points

We defined an inflection point to be a point at which the concavity of a
function changes. If we know where the function is concave up and down,
then we can just answer this question. We want to detect inflection points
more efficiently. A theorem provides a necessary and a sufficient condition
for the existence of an inflection point. Let us start out with an example.

Example 2.41. Find the the inflection points of the function

g(x) = x3 − 4x2 + 3x− 5.
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Figure 2.14: The graph of g.
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Figure 2.15: The graph of g′.
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You see the graph of g in Figure 2.14 and the one of g′ in Figure 2.15.
We calculate the first and second derivative of g:

g′(x) = 3x2 − 8x + 3 and g′′(x) = 6x− 8.

From the formula for the second derivative we conclude that

g′′(x) < 0 if x ∈ (−∞, 4/3) and that g′′(x) > 0 if x ∈ (4/3,∞).

This means that g is concave down on the interval (−∞, 4/3] and concave
up on [4/3,∞). By definition, we have an inflection point at x = 4/3. You
see the inflection point indicated as a dot in Figure 2.14. You also see that
g′(x) has a local extremum at the same point. ♦

Theorem 2.42. Let f be a function and c an interior point of its domain.
Suppose that the first and second derivatives of f exist at c.

1. If f has an inflection point at c, then f ′′(c) = 0.

2. If f ′′(c) = 0, f ′′′(c) exists and f ′′′(c) 6= 0, then f has an inflection
point at c.

Example 2.43. Find the inflection points of

f(t) = 2t4 − 6t3 + 5t2 − 7t + 4.

Solution: We calculate the second derivative of the function and find

f ′′(t) = 24t2 − 36t + 10.

According to the theorem, we have to find the zeros of f ′′(x) to determine
where an inflection point can be. The roots are

t =
3
4
± 1

12

√
21 =

9±√21
12

.

Now, let us check whether there are inflection points at either of these values
for t. We calculate the third derivative of f :

f ′′′(t) = 48t− 36.

We could plug t = (9 ± √21)/12 into the expression for f ′′′, but this is a
bit cumbersome. We see right away that f ′′′(t) = 0 exactly if t = 3/4, and
this means that f ′′′(9±√21)/12) 6= 0. The theorem says that the inflection
points of f(t) are at t = (9±√21)/12. ♦
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Apparently, our ability it find inflection points of a function is limited by
our ability to find the zeros of its second derivative. If we are given graphical
information, then this quite easy.

Example 2.44. Find the inflection points of the function

f(x) =
√

1.2 + x2 − 3(sin x)3.
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Figure 2.16: The graph of f .
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Figure 2.17: The graph of f ′′.

Apparently, it will take an effort to calculate the second derivative of
this function, and it will be nearly impossible to find the zeros of f ′′. Any
reasonable software has no problem with this. We asked the computer to
graph f and f ′′ for x ∈ [−3, 3]. You see the graphs in Figures 2.16 and 2.17.

A look at the graph of f barely reveals some of the inflection points, but
the graph of f ′′ shows them clearly. Zooming in on parts of the graph f will
not improve this. At least in this example, the graph of f ′′ tells us much
more about the concavity of the function f than its own graph. ♦
Exercise 21. Discuss the relation between the inflection points of a function
f and the local extrema of its derivative f ′.

2.8 Absolute Extrema of Functions

We said that a function f has a local maximum at c if its value at c is largest
in comparison to the values at point near c. In many cases we like to find the
maximal value of a function, and where it occurs, anywhere in the domain
of the function. This concept is captured in
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Definition 2.45. Let f be a function, and c a point in its domain. We say
that f has an absolute maximum at c if f(x) ≤ f(c) for all x in the domain
of f . Then we call f(c) the absolute maximum of f . If f(x) ≥ f(c) for all
x in the domain of f , then we say that f has an absolute minimum at c,
and we call f(c) the absolute minimum of f .

A different expression is to say that the function assumes its absolute
extremum at c.

Theorem 2.46. A continuous function on a closed interval [a, b] assumes
its absolute maximum and minimum either at a critical point or at an end-
point of the interval.

Proof. In Theorem 1.17 we asserted that a continuous function assumes
its absolute maximum at some point in the interval. If the function does
not assume its absolute maximum at an endpoint, then it does so at some
interior point c, and the function has a local maximum at c. If f is not
differentiable at c, the c is critical. If f is differentiable at c, then f ′(c) = 0
by Theorem 2.31, and c is critical as well. The argument for the absolute
minimum is left to the reader.

Example 2.47. Find the absolute extrema of the function

f(x) = x3 − 5x2 + 6x + 1

for x ∈ [0, 4].
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Figure 2.18: x3 − 5x2 + 6x + 1.
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Figure 2.19: 3x2 − 10x + 6

Solution: According to Theorem 2.46, the absolute extrema of the func-
tion occur either at one of the end points x = 0, x = 4, or at a critical
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point. In fact, f(0) = 1 and f(4) = 9. The critical points, i.e., the zeros of
f ′(x) = 3x2 − 10x + 6, are x = (5 ± √7)/3. Approximate values of these
roots are 2.5486 and .7848. You may also check that f ′′(x) = 6x− 10, and

f ′′((5 +
√

7)/3) > 0 and f ′′((5−
√

7)/3) < 0.

The second derivative test tells us that the function has a local minimum at
x = (5 +

√
7)/3 and a local maximum at x = (5−√7)/3. The approximate

values of the function at these points are

f((5 +
√

7)/3) = 3.1126 and f((5−
√

7)/3) = .3689.

Comparing the values of f(x) at these four points, we conclude that the
function assumes its absolute maximum of 9 at x = 4, and its absolute
minimum of approximately .3689 at x = (5−√7)/3.

You may compare our calculation with the graphs of f in Figure 2.18
and the one of f ′ in Figure 2.19. ♦

Exercise 22. Find the absolute extrema of the functions on the indicated
intervals.

(a) f(x) = x2 − 5x + 2 for x ∈ [0, 5]

(b) f(x) = x3 + 3x2 − 5x + 2 for x ∈ [−3, 2.5]

(c) f(x) =
√

2 + x/
√

1 + x for x ∈ [0, 5]

(d) f(x) = cos 2x + 2cos x for 0 ≤ x ≤ 2π

(e) f(x) = sinx + cos x for 0 ≤ x ≤ 2π

2.9 Optimization Story Problems

Many real-life problems are formulated as optimization problems. Calculus
helps us to solve these optimization problems. To avoid lenghty introduc-
tions to real-life problems, we content ourselves with problems of an algebraic
or geometric nature. We consider a few examples and give some problems
for practice.

Example 2.48. Cut a string of length 50 centimeters into two pieces. Use
one piece as the perimeter of an equilateral triangle and the other one as the
perimeter of a disk. How long should each piece be, so that the combined
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area of the triangle and the circle is minimal? How long should each piece
be, so that the combined area of the triangle and the circle is maximal?

In our solution we will go through several steps.
Introduction of notation: There are many ways to set up the notation

to solve this problem. Among them we say that the side length of the triangle
is a and the radius of the circle is r.

Express information as equations: The perimeter of the triangle
will be 3a and the perimeter of the circle will be 2πr. This means that

3a + 2πr = 50 and a =
50− 2πr

3
.

The height of the triangle is h = a
√

3
2 , and its area is a2

√
3

4 . The area of the
disk is πr2. The combined area of the triangle and disk is

A =
a2
√

3
4

+ πr2 =
√

3
4

(
50− 2πr

3

)2

+ πr2.

For this to make sense, we need that 0 ≤ r ≤ 25/π.
Formulate the problem mathematically: Find the absolute mini-

mum (maximum) of the function

A(r) =
√

3
4

(
50− 2πr

3

)2

+ πr2.

for r ∈ [0, 25/π].
Solve the mathematical problem: The derivative of A(r) is

A′(r) = −4π
3
·
√

3
4

(
50− 2πr

3

)
+ 2πr =

−π√
3

(
50− 2πr

3

)
+ 2πr,

and A′(r) = 0 if and only if r = 50/(2π + 6
√

3). We note that A(r) is a
parabola which is open upwards. The critical point, which we just found, is
where the local minimum occurs. It is also the absolute minimum of A(r) on
any interval which contains the critical point. For the end points we have:
A(0) ≈ 120.28 amd A(25/π) ≈ 198.94.

Answer the original question: The combined area of the disk and
the triangle will be minimal if r = 50/(2π + 6

√
3), and it will be maximal

of r = 25/π. In the latter case, all string is used for the circle. ♦

Exercise 23. Repeat the previous example with

1. a disk and a square.
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2. an equilateral triangle and a square.

3. a regular hexagon and a square.

4. a disk and half an equilateral triangle (the angles at 30, 60 and 90
degrees).

5. two geometric shapes of your own choice.

Example 2.49. Construct an open box from a rectangular piece of card
board of length L and width W . What are the dimensions of the box with
the largest possible volume?

In our solution we will go through several steps.
Clarification and introduction of notation: We construct the box

by making an incision at a 45 degree angle at each corner. Then we fold
up a strip of width x along each side8. For yourself, draw a picture of
this production process, and convince yourself that any box obtained by a
different process will have smaller volume. To simplify matters, we call the
longer side of the rectangle L and the shorter one W .

Express information as equations: As we folded up a strip of width
x, the box will have width W − 2x, length L− 2x, height x, and volume

V (x) = (W − 2x)(L− 2x)x = WLx− 2(L + W )x2 + 4x3.

By construction, x ≥ 0, x ≤ W/2, and x ≤ L/2, in fact x ≤ W/2.
Formulate the problem mathematically: Find the absolute maxi-

mum of the function

V (x) = WLx− 2(L + W )x2 + 4x3

for x ∈ [0,W/2].
Solve the mathematical problem: At the end points of the interval

V vanishes, i.e., V (0) = V (W/2) = 0. On the interior of the interval the
function is positive. The derivative of V is

V ′(x) = WL− 4(W + L)x + 12x2.

The zeros of V ′ are at

x =
1
6

[
(L + W )±

√
L2 + W 2 − LW

]
.

8You could have cut out a square of size x× x at each corner.
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The function has an inflection point at (W + L)/6, to the right of which V ′′

is positive and V is concave up, and to the left of which V is concave down.
We conclude that V has a local maximum at

x =
1
6

[
(L + W )−

√
L2 + W 2 − LW

]
.

As the function V (x) has only one local maximum in the interval, the local
maximum is the same as the absolute maximum.

Answer the original question: The box with the largest volume will
have a height of

x =
1
6

[
(L + W )−

√
L2 + W 2 − LW

]
.

Its width will be W − 2x and its length L− 2x. ♦

Exercise 24. Repeat the previous example with specific numbers for the
width and length of the piece of card board.

Exercise 25. Start out with an equilateral piece of card board with side
length a. Make incisions at the corners, and fold up strips along the edges.
You will get an open box whose base is an equilateral triangle. How broad
should the folded up strips be, so that the volume of the box is maximal?

Exercise 26. Modify the problem from above, constructing a box with a
round base from a circular piece of card board.

Exercise 27. What is the largest possible volume for a right circular cone
of slant height a?

Example 2.50. Determine the rectangle of maximal area which can be
placed between the x-axis and the graph of the function f(x) = sin x.

Solution: Draw a graph of sin x so that you can follow the discussion.
Convince yourself that the vertices of the rectangle should be (x, 0), (π −
x, 0), (x, sin x) and (π − x, sin x) for some x ∈ [0, π/2]. The width of the
rectangle is π − 2x and its height is sin x, so that its area is

A(x) = (π − 2x) sin x.

We need to find the absolute maximum for this function for x ∈ [0, π/2].
The first derivative of this function is A′(x) = −2 sin x + (π − 2x) cos x.

After a simple algebraic simplification, you find that

A′(x) = 0 if and only if tan x =
π − 2x

2
.
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Find an approximate solution of the equation using Newton’s method or your
calculator. A fairly good approximation of the zero of A′(x) is x0 = .710462.
Convince yourself9 that this is the only zero of A′(x) for x ∈ [0, π/2]. We
conclude that x0 is the only critical point of A(x).

You may calculate A′′(x). Substituting x0 you will see that A′′(x0) < 0.
It follows from the second derivative test that A(x) has a local maximum
at x0. Apparently A(x) = 0 at the end points x = 0 and x = π/2 of the
interval. This tells us that A(x) assumes its absolute maximum at x0.

With this, the final answer to our problem is: The rectangle of maximal
area which can be placed between the x-axis and the graph of the sine
function will have a width of approximately π− 2x0 = 1.72066 and a height
of sinx0 = .652183. Its area will be about 1.12218. ♦

To find the absolute extrema of a continuous function on an interval of
the form [a, b] we could inspect the values of the function at the critical
points and at a and b. It allows us to decide whether a local extremum is
also an abolute one. Our next result allows us to do the same even if the
interval is not closed and bounded. The assumptions of this theorem are
satisfied in many applied problems.

Theorem 2.51. Suppose f is defined on an interval I.

(a) If f is concave up on I and has a local minimum at x0, then f assumes
its absolute minimum at x0.

(b) If f is concave down on I and has a local maximum at x0, then f
assumes its absolute maximum at x0.

Example 2.52. Find the absolute minimum of the function

f(x) = x +
1
x

for x ∈ (0,∞).
Solution: We calculate the first and second derivative of f(x):

f ′(x) = 1− 1
x2

and f ′′(x) =
2
x3

.

We find that f ′(x) = 0 if x = 1, and that f ′′(x) > 0 for all x in (0,∞). So f
has a local minimum at x = 1, and f is concave up on (0,∞). Theorem 2.51
tells us that the absolute minimum of the function is f(1) = 2. ♦

9One possible argument is that tan x is increasing on the interval [0, π/2), and that
π−2x

2
is decreasing. So these functions can intersect in only one point.
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Exercise 28. Find the largest possible area for a rectangle with base on
the x-axis and upper vertices on the curve y = 4− x2.

Exercise 29. A rectangular warehouse will have 5000 m2 of floor space and
will be separated into two rectangular rooms by an interior wall. The cost of
the exterior walls is $ 1,000.00 per linear meter and the cost of the interior
wall is $ 600.00 per linear meter. Find the dimensions of the warehouse that
minimizes the construction cost.

Exercise 30. One side of a rectangular meadow is bounded by a cliff, the
other three sides by straight fences. The total length of the fence is 600
meters. Determine the dimensions of the meadow so that its area is maximal.

Exercise 31. Draw a rectangle with one vertex at the origin (0, 0) in the
plane, one vertex on the positive x-axis, one vertex on the positive y-axis,
and one vertex on the line 3x + 5y = 15. What are the dimensions of a
rectangle of this kind with maximal area?

Exercise 32. Two hallways, one 8 feet wide and one 6 feet wide, meet at a
right angle. Determine the length of the longest ladder that can be carried
horizontally from one hallway into the other one.

Exercise 33. Inscribe a right circular cylinder into a right circular cone of
height 25 cm and radius 6 cm. Find the dimensions of the cylinder if its
volume is the be a maximum.

Exercise 34. A right circular cone is inscribed in a sphere of radius R.
Find the dimensions of the cone if its volume is to be maximal.

Exercise 35. Find the dimensions of a right circular cone of minimal vol-
ume, so that a ball of radius 10 centimeters can be inscribed.

Exercise 36. Consider a triangle in the plane with vertices (0, 0), (a, 0),
and (0, b). Suppose that a and b are positive, and that (2, 5) lies on the line
through the points (a, 0), and (0, b). What should the slope of the line be,
so that the area of the triangle is minimal?

Exercise 37. Minimize the cost of the material needed to make a round
drum with a volume of 200 liter (i.e., .2 m3) if

(a) the drum has a bottom and a top, and the same material is used for
the top, bottom and sides.

(b) the drum has no top (but a bottom) and the same material is used for
the bottom and sides.
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(c) the drum has a bottom and a top, the same material is used for the
top and bottom, and the material for the top and bottom is twice as
expensive as the material for the sides.

(d) the situation is as in the previous case, but the top and the bottom
are cut out of squares, and the left over material is recycled for half
its value.

Exercise 38. Consider a box with a round base and no lid whose interior
is subdivided into six wedge shaped sectors. Which shape should it have,
so that its volume is maximal, assuming you are allowed a fixed amount of
material? More specifically determine the ratio of radius and height which
will maximize the volume.

Exercise 39. Design a roman window with a perimeter of 4 m which admits
the largest amount of light. (A roman window has the shape of a rectangle
capped by a semicircle.)

Exercise 40. A rectangular banner has a red border and a white center.
The width of the border at top and bottom is 15 cm, and along the sides
10 cm. The total area is 1 m2. What should be the dimensions of the banner
if the area of the white area is to be maximized?

Exercise 41. A power line is needed to connect a power station on the
shore line to an island 2 km off shore. The point on the coast line closest to
the island is 6 km from the power station, and, for all practical purposes, you
may suppose that the shore line is straight. To lay the cable costs $40,000
per kilometer under ground and $70,000 under water. Find the minimal
cost for laying the cable.

Exercise 42. Consider the distance D(x) between a point P (x) = (x, f(x))
on the graph of a differentiable function f(x) and a point Q = (x0, y0)
not on this graph. Suppose D(x) has a local minimum at x1. Then the
tangent line to the graph of f at x1 intersects the line joining P (x1) and Q
perpendicularly.

2.10 Sketching Graphs

The techiques which we developed so far provide us with some valuable tools
for graphing functions. Let us make a list of data which we may determine,
so that we can sketch a graph rather precisely. Going through the following
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program is also a good review of the material which we developed in this
chapter.

Useful information for graphing a function: We call the function
f(x).

(a) Plot some points on the graph, such as the y-intercept. If the function
is given on a closed interval, plot the values at its endpoints.

(b) Plot the zeros of the function. If you cannot find the zeros by analytical
means, try it numerically (Newton’s method).

(c) If possible, decide on which intervals the function is positive, resp.,
negative.

(d) Find the first derivative f ′(x) of f(x).

(e) Repeat (b) and (c) with f ′(x) in place of f(x). Intervals on which
f ′(x) is positive give you intervals on which f(x) is increasing, and
intervals on which f ′(x) is negative give you intervals on which f(x)
is decreasing. The zeros of f ′(x) provide you with the critical points
of f(x). Plot the critical points (x and y value), and keep track of the
intervals on which the function is increasing, resp., decreasing.

(f) Find the second derivative f ′′(x) of f(x).

(g) Repeat (b) and (c) with f ′′(x) in place of f(x). Intervals on which
f ′′(x) is positive give you intervals on which f(x) is concave up, and
intervals on which f ′′(x) is negative give you intervals on which f(x)
is concave down. Find the inflection points of the function, i.e., the
points where the concavity changes. Plot the inflection points (x and y
value), and keep track of the intervals on which the function is concave
up, resp., concave down.

(h) Decide at which critical points of f(x) the function has a saddle point
or local extremum, and whether it is a minimum or a maximum.

If you now draw a graph which exhibits all of the properties which you
gathered in the course of the suggested program, then your graph will look
very much like the graph of f(x). More importantly, the graph will have all
of the essential features of the graph of f(x). Let us go through the program
in an example.
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Example 2.53. Discuss the graph of the function

f(x) = x4 − 2x3 − 3x2 + 8x− 4 for x ∈ [−3, 3].

Solution: To make the discussion a little easier, we note that

f(x) = (x− 1)2(x2 − 4) = (x− 1)2(x− 2)(x + 2).(2.1)

You should verify this by multiplying out the expression for f(x) in (2.1).
(a): Plot the y intercept of the function and its values at the end points

of the given interval: f(−3) = 80, f(0) = −4 and f(3) = 20.
(b): As a polynomial, the function f(x) is differentiable on the given

interval. The only exceptional points are its zeros. Having written f(x) as
in (2.1), we see right away that f(x) = 0 if and only if x = −2, x = 1, or
x = 2. Plot these x-intercepts.

(c): Counting the signs of the factors of f(x), we see that f(x) is positive
on the intervals [−3,−2) and (2, 3], and negative on (−2, 1) and (1, 2).

(d): We calculate the derivative of f(x):

f ′(x) = 2(x− 1)(x2 − 4) + (x− 1)22x = 2(x− 1)(2x2 − x− 4).

We based the calculation on the description of f(x) in (2.1). In the first
step we applied the product rule, and then we used elementary algebra.

(e): We use the quadratic formula to find the zeros of the factor 2x2−x−4
in the expression for f ′(x). They are (1±√33)/4. This allows us to factor
the expression for f ′(x), and we find:

f ′(x) = 4(x− 1)
(

x− 1
4
[1 +

√
33]
)(

x− 1
4
[1−

√
33]
)

.

We conclude that:

• f ′(x) is negative on the interval [−3, (1−√33)/4) and f(x) is decreas-
ing on [−3, (1 −√33)/4].

• f ′(x) is positive on the interval ((1−√33)/4, 1) and f(x) is increasing
on [(1−√33)/4, 1].

• f ′(x) is negative on the interval (1, (1+
√

33)/4) and f(x) is decreasing
on [1, (1 −√33)/4].

• f ′(x) is positive on the interval ((1+
√

33)/4, 3] and f(x) is increasing
on [(1 +

√
33)/4, 3].
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• f(x) has a critical point and local minimum at (1−√33)/4 ≈ −1.19,
a critical point and local maximum at x = 1, and a critical point and
local minimum at (1 +

√
33)/4 ≈ 1.69.

The values of the function at its three critical points are approximately:

f(
1−√33

4
) ≈ −12.39 & f(1) = 0 & f(

1 +
√

33
4

) ≈ −.54.

Plot these points.
(f): We rewrite the first derivative as f ′(x) = 4x3 − 3x2 − 3x + 4, and

find

f ′′(x) = 12x2 − 12x− 6.

(g): We use the quadratic formula to find the zeros on f ′′(x) and factor
it:

f ′′(x) = 12
(

x− 1
2
[1 +

√
3]
)(

x− 1
2
[1−

√
3]
)

.

We conclude that:

• f ′′(x) is positive on the interval [−3, (1 −√3)/2) and f(x) is concave
up on [−3, (1−√3)/2]

• f ′′(x) is negative on the interval ((1−√3)/2, (1 +
√

3)/2) and f(x) is
concave down on [(1−√3)/2, (1 +

√
3)/2]

• f ′′(x) is positive on the interval ((1+
√

3)/2, 3] and f(x) is concave up
on [(1 +

√
3)/2, 3]

• f(x) has inflection points at x = (1 − √
3)/2 ≈ −.37 and at x =

(1 +
√

3)/2 ≈ 1.37.

The values of the function at its inflection points is approximately:

f(
1−√3

2
) ≈ −7.21 & f(

1−√3
2

) ≈ −.29.

Plot these points.
(h): At this point we could use the second derivative test to find at which

critical points the function has local extrema, but we decided this already
based on first derivative behaviour in (e).
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Let us gather and organize our information. We consider the interval:

I1 = [−3,−2]

I2 =

[
−2,

1−√33
4

]

I3 =

[
1−√33

4
,
1−√3

2

]

I4 =

[
1−√3

2
, 1

]

I5 =

[
1,

1 +
√

3
2

]

I6 =

[
1 +

√
3

2
,
1 +

√
33

4

]

I7 =

[
1 +

√
33

4
, 2

]
I8 = [2, 3] .

We tabulate the which properties hold on which interval. It should be
understood, that at some end points of intervals the function is zero.

Property I1 I2 I3 I4 I5 I6 I7 I8

Sign pos neg neg neg neg neg neg pos

Monotonicity dec dec inc inc dec dec inc inc

Concavity up up up down down up up up

Table 2.1: Properties of the Graph

In Figure 2.20 you see the graph of the function. We have shown it on
a slightly smaller interval, as the values at the endpoint a comparetively
large. Showing all of the graph would show less clearly what happens near
the intercept, extrema, and inflection points. The dots indicate the points
which we suggests to plot.

In Figure 2.21 you see the graph of f on an even smaller interval, and
parts of the graphs of f ′ and f ′′. You can use them to see that f is decreasing
where f ′ is negative, f is concave down where f ′′ is negative, etc. ♦

Exercise 43. In analogy with the previous example, discuss the function

f(x) = (x− 1)(x− 2)(x + 2) = x3 − x2 − 4x + 4

on the interval [−3, 2.5]. In addition, find the absolute extrema of this
function.
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Figure 2.20: The Graph
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Figure 2.21: f , f ′, f ′′

Exercise 44. In analogy with the previous example, discuss the function

f(x) = x3 − 3x + 2

on the interval [−2, 2]. In addition, find the absolute extrema of this func-
tion.

Exercise 45. In analogy with the previous example, discuss the function

f(x) = 2 sin x + cos 3x

on the interval [0, 2π]. In addition, find the absolute extrema of this function.
You may have to apply Newton’s method to find zeros of f , f ′, and f ′′.
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Chapter 3

Integration

We will introduce the ideas of the definite and the indefinite integral. Sup-
pose that f is a function which is defined and bounded on the interval [a, b].
If it exists, then the definite integral of f over the interval [a, b] is a real
number. It is denoted by ∫ b

a
f(x) dx.

The definition is set up, so that for a non-negative function it makes sense
to think of the integral as the area of the region bounded by the graph of
the function, the x-axis, and the lines x = a and x = b.

The indefinite integral of a function f is the family (set) of all antideriva-
tives of f , i.e. all functions whose derivative is f . For important classes of
functions one may utilize definite integrals to construct antiderivatives. The
Fundamental Theorem of Calculus relates definite integrals and antideriva-
tives.

To be concrete, consider the function f(x) = x2e−x, shown in Figure 3.1,
and find the area of the region Ω bounded by the graph of f(x), the lines
x = 1 and x = 5, and the x-axis.

3.1 Properties of Areas

So far, we only know the area of some simple regions, like rectangles. We
will denote the area of a region Ω by Area(Ω). Whatever concept of area we
have in mind, it should have the following properties:

• The area of a rectangle is the product of the lengths of its sides.

105
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0.6

Figure 3.1: f(x) = x2e−x

• Suppose that Ω1 and Ω2 are regions in the plane, and that the area of
each of them is defined.

If Ω1 ⊆ Ω2, then Area(Ω1) ≤ Area(Ω2).

• Suppose that Ω1 and Ω2 are regions in the plane, and that the area
of each of them is defined. If the regions Ω1 and Ω2 do not intersect,
then the area of the union Ω1 ∪ Ω2 of Ω1 and Ω2 is defined, and

Area(Ω1 ∪ Ω2) = Area(Ω1) + Area(Ω2).

Suppose for a moment, that the region under the graph shown in Fig-
ure 3.1 has an area. In Figure 3.2 you see a rectangle Rl with area .6, which
is contained in Ω. In Figure 3.3 you see a rectangle Ru with area 2.24 which
contains Ω. The first two principles tell us that

Area(Rl) = .6 ≤ Area(Ω) ≤ Area(Ru) = 2.24.

From above principles one may derive another one, which occurs fre-
quently in our upcoming constructions:
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Figure 3.2: A rectangle Rl con-
tained in Ω
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Figure 3.3: A rectangle Ru con-
taining Ω

• Suppose the region R in the plane is the union of a finite number of
rectangles R1, . . . , Rn and any two of them intersect at most in an
edge. Then Area(R) is defined, and it is equal to the sum of the areas
of the regions R1, . . . , Rn:

Area(R) = Area(R1) + · · ·+ Area(Rn).

3.2 Partitions and Sums

We like to refine the approach to calculating areas of regions which we
started in the previous section. We do so by partitioning the interval before
applying the ideas from above, and then we add up what we get over the
individual intervals.

A partition of an interval [a, b] is of a collection is points {xj | 0 ≤ j ≤ n},
such that

a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b.

The interval [a, b] is partitioned into n intervals [xj−1, xj ] with 1 ≤ j ≤ n.



108 CHAPTER 3. INTEGRATION

3.2.1 Upper and Lower Sums

As before, f denotes a function which is defined and bounded on [a, b]. On
each interval we pick numbers mj and Mj , such that

mj ≤ f(x) ≤ Mj for all x ∈ [xj−1, xj ].

We define the lower sum to be

Sl = m1(x1 − x0) + m2(x2 − x1) + · · · + mn(xn − xn−1).(3.1)

and the upper sum to be

Su = M1(x1 − x0) + M2(x2 − x1) + · · ·+ Mn(xn − xn−1).(3.2)

These sums depend on the choice of partition and the choices for the mj

and Mj .
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Figure 3.4: A union of rectangles
contained in Ω
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Figure 3.5: A union of rectangles
containing Ω

Let us return to the example of the function f(x) = x2e−x on the interval
[1, 4]. In the computation of the lower sum we use the partition

x0 = 1 < x1 = 2 < x2 = 3 < x3 = 4 < x4 = 5

of the interval. We also pick m1 = .35, m2 = .43, m3 = .28 and m4 = .16.
This leads to a lower sum Sl = 1.22. In the computation of the upper sum
we use the partition

x0 = 1 < x1 = 3 < x2 = 4 < x3 = 5
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of the interval. We also pick M1 = .55, M2 = .45 and M3 = .3. This leads
to an upper sum Su = 1.85. The mj and Mj represent the heights of the
rectangles in Figures 3.4 and 3.5, and we trust these figures to show that
mj ≤ f(x) and f(x) ≤ Mj on the respective interval.

As before, let Ω denote the region under the graph. Then the union of
the rectangles shown in Figure 3.4 is contained in Ω, and the union of the
rectangles shown in Figure 3.5 contains Ω. Thus, if Ω has an area, the our
principles tell us that

Sl = 1.22 ≤ Area(Ω) ≤ Su = 1.85.

In fact the only number greater or equal to all lower sums and smaller
or equal to all upper sums is 5

e − 37
e5 , and this will be the area of the region

Ω. Here e is the Euler number.

Example 3.1. Let us find upper and lower sums for the function

f(x) = x3 − 7x2 + 14x− 8

for x ∈ [.5, 4.5]. In contrast to the function in the previous example, this
function is not non-negative.

1 2 3 4
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4

Figure 3.6: Rectangles for calcu-
lating an upper sum.
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Figure 3.7: Rectangles for calcu-
lating a lower sum.

Solution: For the purpose of calculating an upper sum, we partitioned
the interval [.5, 4.5] using the intermediate points x0 = .5, x1 = 1.1, x2 = 2.4,
x3 = 3.8, and x4 = 4.5. As numbers Mi (so that Mi ≥ f(x) for x ∈ [xi−1, xi])
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we chose M1 = .3, M2 = .7, M3 = −.9, and M4 = 4.4. These data are shown
in Figure 3.6. With these choices, the upper sum is

Su = .3(1.1 − .5) + .7(2.4 − 1.1) + (−.9)(3.8 − 2.4) + 4.4(4.5 − 3.8)
= 2.91.

In Figure 3.6 you see four rectangles. Their areas are combined to calculate
the upper sum. The areas of the ones above the x-axis are added, the ones
below the axis are subtracted, in accordance with the sign of the Mi.

In the calculation of the lower sum we partitioned [.5, 4.5] using x0 = .5,
x1 = .8, x2 = 2.3, x3 = 4.2, and x4 = 4.5. As numbers mi (so that
mi ≤ f(x) for x ∈ [xi−1, xi]) we chose m1 = −2.7, m2 = −.8, m3 = −2.2,
and m4 = 1.3. These data are shown in Figure 3.7. With these choices we
calculate a lower sum of

Sl = −2.7(.8 − .5) + (−.8)(2.3 − .8) + (−2.2)(4.2 − 2.3) + 1.3(4.5 − 4.2)
= −5.8.

In Figure 3.7 you see four rectangles. Their areas are combined to calculate
the lower sum. The areas of the ones above the x-axis are added, the ones
below the axis are subtracted, in accordance with the sign of the mi.

In summary, you see that we still combine areas of rectangles in the
calculation of the upper and lower sum, only that, depending on the sign
of the Mi or mi, these rectangles are either above or below the x-axis, and
depending on this, their areas are either added or subtracted. ♦

Let us make a simple albeit important observation:

Theorem 3.2. Let f be a function which is defined and bounded on a closed
interval [a, b]. Let Sl be any lower sum of f and Su any upper sum. Then

Sl ≤ Su.

Let us repeat the statement of the theorem to emphasize its meaning.
Whichever partition of the interval [a, b] and whichever mi we use in the
calculation of the lower sum Sl and whichever partition of the interval and
whichever Mi we use in the calculation of the upper sum Su, the lower sum
is always smaller or equal to the upper sum. To see this, one refines the
partitions for the upper and lower sum computation so that they become
the same. Then one notes that mi ≤ Mi for all i.
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3.2.2 Riemann Sums

Suppose once again that f(x) is a function which is defined on the interval
[a, b]. Pick once more a partition

a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b

of the interval. In each subinterval, pick a point xj ∈ [xj−1, xj ]. Then we
define the Riemann Sum

SR = f(x1)(x1 − x0) + f(x2)(x2 − x1) + · · ·+ f(xn)(xn − xn−1).(3.3)

We leave it to the reader to contemplate

Proposition 3.3. Let f be a function which is defined and bounded on a
closed interval [a, b]. Let Sl be any lower sum of f , Su any upper sum, and
SR any Riemann sum. Then

Sl ≤ SR ≤ Su.

1 2 3 4 5 6
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0.3

0.4

0.5

0.6

Figure 3.8: Representing a Riemann Sum

To be more concrete, let us return to the example f(x) = x2e−x on the
interval [1, 5]. Let us use the partition

x0 = 1 < x1 =
√

3 < x2 = 5.

In the two interval of this subdivision we pick the points x1 =
√

2 ∈ [1,
√

3]
and x2 = π ∈ [

√
3, 5]. As Riemann sum we obtain

SR = f(x1)(x1 − x0) + f(x2)(x2 − x1) ≈ 1.749741.

In Figure 3.8 you see the picture illustrating the computation. There are
two rectangles, their bases are the intervals in the subdivision, and their
heights are f(x1) and f(x2). The sum of the areas of these rectangles is the
Riemann sum.
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3.3 Limits and Integrability

The idea is to refine the partitions in our previous construction, so that in
the limit our sums can be justifiably called the area of the region under the
graph, if the function is non-negative. The specifics depend on which sums
we are working with.

3.3.1 The Darboux Integral and Areas

As we discussed earlier, whatever choices we make in the calculation of
lower and upper sums Sl and Su, we always have that Sl ≤ Su. A crucial
additional fact is stated in the next result.

Theorem 3.4. Let f be a function which is defined and bounded on a closed
interval [a, b]. There exists a real number Y , such that

Sl ≤ Y ≤ Su

for all lower sums Sl and upper sums Su of f .

Idea of Proof. To deduce the theorem from the completeness of the real
numbers, one observes that the set of all lower sums of f has a least upper
bound. Call it Yl. The set of all upper sums of f has a greatest lower
bound. Call it Yu. Apparently, Yl ≤ Yu. Then Y is any number such that
Yl ≤ Y ≤ Yu.

We are now prepared to define the concept of integrability of a function.

Definition 3.5. Let f be a function which is defined and bounded on a
closed interval [a, b]. If there is exactly one number Y , such that

Sl ≤ Y ≤ Su

for all lower sums Sl and all upper sums Su of f , then we say that f is
integrable over the interval [a, b]. In this case, the number Y is called the
integral1 of f for x between a and b. It is also denoted by∫ b

a
f(x) dx.

1To distinguish it from the result of a different, but typically equivalent, construction
we should Y the Darboux integral.
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Remark 8. For completeness sake and later use, let us explain what hap-
pens when a function is not integrable. In this case there are at least two
different numbers, and with this an entire interval, between all upper and
lower sums. So, a function over a closed interval [a, b] is not integrable if
and only if the exists a positive number D such that Su − Sl ≥ D for any
lower sum Su and any upper sum Su.

On the other hand, a function is integrable if for every positive number
D there is an upper sum Su and a lower sum Sl such that Su − Sl < D.

Example 3.6. Explore upper sums, lower sums, and integrability for the
function f(x) = x2 on the interval [0, 1].

Solution: Fix a natural number n and set

x0 = 0 < x1 =
1
n

< x2 =
2
n

< · · · < xn−1 =
n− 1

n
< xn =

n

n
= 1.

This is an equidistant partition of the interval [0, 1], all subintervals have
the same length 1/n.

For the upper sums we pick

M1 = f(x1) =
(

1
n

)2

, M2 = f(x2) =
(

2
n

)2

, M3 = f(x3) =
(

3
n

)2

, . . .

and Mj = f(xj) =
(

j
n

)2
in general. Apparently, Mj ≥ f(x) for all x ∈

[xj−1, xj ] because f(x) is increasing on [0, 1]. Without proof, we use that

12 + 22 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

We calculate the upper sum

Su = M1(x1 − x0) + M2(x2 − x1) + · · ·+ Mn(xn − xn−1)

=
(

1
n

)2

× 1
n

+
(

2
n

)2

× 1
n

+ · · · +
(n

n

)2 × 1
n

=
1
n3

[
12 + 22 + · · · n2

]
=

n(n + 1)(2n + 1)
6n3

=
1
3

+
1
2n

+
1

6n2

For the lower sums we pick

m1 = f(x0) = 0, m2 = f(x1) =
(

1
n

)2

, m3 = f(x2) =
(

2
n

)2

, . . .
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Figure 3.9: Rectangles for calcu-
lating a lower sum.
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Figure 3.10: Rectangles for calcu-
lating an upper sum.

and mj = f(xj−1) =
(

j−1
n

)2
in general. The resulting lower sum is

Sl =
1
3
− 1

2n
+

1
6n2

For n = 5 you see the rectangles whose areas are the summands in the
lower and upper sums in Figures 3.9 and 3.10.

Using the expressions for Su and Sl you see that Su − Sl = 1/n. We
do not only see that Sl ≤ 1

3 ≤ Su, but also that Y = 1/3 is the only real
number, so that Sl ≤ Y ≤ Su for all natural numbers n. According to the
definition this means, that f(x) = x2 is integrable over the interval [0, 1]
and that ∫ 1

0
x2 dx =

1
3
. ♦

We motivated our introduction of upper and lower sums by our quest to
define the concept of area. Our answer is formulated as a

Definition 3.7. Let f be a function which is defined, bounded, and non-
negative on a closed interval [a, b]. Let Ω be the region bounded by the graph
of f , the x-axis, and the lines x = a and x = b. If f is integrable over this
interval, then we say that the region Ω has an area and

Area(Ω) =
∫ b

a
f(x) dx.
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The upper and lower sum were constructed such that if there is any
justification to assigning an area to Ω then

Sl ≤ Area(Ω) ≤ Su.

For an integrable function there is exactly one real number between the
lower and upper sums, so this is the only number which we can call the area
of Ω.

For example, the area of the region Ω bounded by the graph of the
function f(x) = x2, the x-axis, and the lines x = 0 and x = 1 is

Area(Ω) =
∫ 1

0
x2 dx =

1
3
. ♦

3.3.2 The Riemann Integral

Earlier we introduced the idea of a Riemann sum. Consider an interval [a, b]
and a function f(x) defined on it. We picked a partition

P : a = x0 ≤ x1 ≤ x2 ≤ · · · xn−1 ≤ xn = b,

which broke [a, b] up into smaller interval [xj−1, xj ]. In each of the subin-
tervals we picked a point xj ∈ [xj−1, xj ], and set

SR = f(x1)(x1 − x0) + f(x2)(x2 − x1) + · · ·+ f(xn)(xn − xn−1).

We want to consider a limit Riemann sums. This is trickier than for
functions, because there are a lot of choices which we make to define such a
sum. We define the norm of the partition P to be

|P| = max{xj − xj−1 | 1 ≤ j ≤ n},
in other words, the norm of P is the length of the longest of the intervals
[xj−1, xj ].

Definition 3.8 (Limit for Riemann Sums). Suppose the function f(x)
is defined on [a, b]. We say that

L = lim
|P|→0

SR

if for all ε > 0 there exists a δ > 0, such that |L−SR| < ε whenever |P| < δ.
If the limit of the SR exists, then we say that f is Riemann integrable over
[a, b], call L the Riemann integral of f , and write

L = lim
|P|→0

SR =
∫ b

a
f(x) dx.
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Thus L = lim SR if we can force SR to be close to L, as close as we like,
by making the partition fine, by making each subinterval no longer that
some number.

It is worth pointing out and not very difficult to show the following
proposition.

Proposition 3.9. Suppose the function f is defined on the interval [a, b].
Then f is Riemann integrable if and only if it is Darboux integrable. If
defined, the Riemann and the Darboux integral are the same.

3.4 Integrable Functions

We like to provide a supply of integrable functions. Our first result is typi-
cally proved in an analysis course.

Theorem 3.10. Suppose f is defined and continuous on [a, b]. Then f is
integrable over [a, b].

According to this theorem, polynomials are integrable over any interval
of the form [a, b]. Rational functions (i.e., functions of the form p(x)/q(x)
where p(x) and q(x) are polynomials) are integrable over intervals of the
form [a, b] as long as q does not vanish anywhere on the interval. The
trigonometric functions (sin, cos, tan, cot, sec, and csc) are integrable on
intervals where the functions are defined. Arbitrary powers of a variable,
f(x) = xα, are integrable. One just needs to make sure that the function is
defined on the interval [a, b]. For any real number α it suffices to assume that
a > 0. For any real α ≥ 0, it suffices to assume a ≥ 0. For rational numbers
α = p/q, where p and q are integers and q is odd, it suffices to assume
0 6∈ [a, b]. For non-negative integers α no assumption needs to be made on a
and b. Just making sure that the resulting functions are defined everywhere
on [a, b], the functions just mentioned may be added, subtracted, multiplied,
divided, and composed, and one still ends up with integrable functions.

Let us introduce another class of functions for which we can prove that
they are integrable.

Definition 3.11. Suppose f(x) is a function. We say that f(x) is non-
decreasing if f(x1) ≤ f(x2) whenever x1 and x2 are in the domain of f(x)
and x1 ≤ x2. We say that f(x) is non-increasing if f(x1) ≥ f(x2) whenever
x1 ≤ x2.

Proposition 3.12. Let [a, b] be a closed interval and let f be defined and
non-increasing or non-decreasing on [a, b]. Then f is integrable on [a, b]. In
particular, monotonic (increasing or decreasing) functions are integrable.
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Proof. We will use Darboux integrability. Let us assume that the function
f is non-decreasing on the interval. The non-increasing case is left as an
exercise. Take any partition of the interval:

a = x0 < x1 < · · · < xn = b.

The reader may justify why we can use the same partition in the computation
of the upper and lower sum. For i = 1, . . . , n we set

mi = f(xi−1) & Mi = f(xi).

Then, because f is non-decreasing,

mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi].

We use the mi and Mi to compute upper and lower sums. Let ∆ be the
largest value of the xi − xi−1. Then

Su − Sl = [M1(x1 − x0) + · · · + Mn(xn − xn−1)]
−[m1(x1 − x0) + · · · + mn(xn − xn−1)]

= (M1 −m1)(x1 − x0) + · · ·+ (Mn −mn)(xn − xn−1)
≤ [(M1 −m1) + (M2 −m2) + · · ·+ (Mn −mn)] ∆
= (Mn −m1)∆
= [f(b)− f(a)]∆

The inequality in the computation follows from the choice of ∆. The
second to last equality follows because Mi−1 = mi for all i = 2, . . . , n.
Many terms in the computation cancel. Given any positive number D, we
can make the partition fine enough so that [f(b) − f(a)]∆ < D. According
to our Remark 8 this means that f is integrable over the interval, as we
claimed.

We illustrate the steps in the proof in a concrete example. In Figure 3.11
you see the upper and lower sum. The lower sum is the sum of the areas
of the darkly shaded rectangles. The upper sum is the sum of the areas of
the lightly and darkly shaded rectangles. The difference between the upper
and the lower sum is the sum of the lightly shaded rectangles shown in
Figure 3.12. We can combine these areas by sliding the rectangles sideways
so that they form one column. Its height will be f(b)− f(a). Its width may
vary, but in the widest place it is no wider than ∆, the width of the largest
interval in the partition of [a, b]. That means, the difference between the
upper and the lower sum is at most [f(b)− f(a)]∆. As above, we conclude
that the function is integrable.
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Figure 3.11: Rectangles for calcu-
lating a lower and an upper sum.
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Figure 3.12: Rectangles for calcu-
lating the difference between an
upper and a lower sum.

Remark 9. There are functions which are not integrable over any interval
of the form [a, b] with a < b.

Remark 10. Here we only discuss integrability of function over closed finite
intervals, i.e., intervals of the form [a, b]. The discussion of integrability of
functions over intervals which are not of this form, e.g., half-open intervals
like [a, b) or unbounded closed intervals like [a,∞), requires additional ideas
and techniques which we are not ready to discuss yet.

3.5 Some elementary observations

In spite of our success calculating some integrals using upper and lower
sums and the definition, this is certainly not the way to go in general. To
integrate “well behaved” functions we want a theory which allows us to
calculate integrals more easily. We have to develop a few basic tools. These
are fairly straight forward consequences of the definition of the integral.

Proposition 3.13. If the function f is defined at a, then∫ a

a
f(x) dx = 0(3.4)

Proof. The reader should contemplate the proposition.
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Proposition 3.14. Let [a, b] be a closed interval, c a point between a and
b, and f a function which is defined on the interval. Then∫ c

a
f(x) dx +

∫ b

c
f(x) dx =

∫ b

a
f(x) dx.(3.5)

Implicitly in the formulation of the proposition is the statement that f
is integrable over [a, b] if and only if it is integrable over the intervals [a, c]
and [c, b]. If one of the sides of Equation (3.5) exists, then so does the other
one.

Idea of Proof. Use c as one of the points in the partition. The remaining
details are left to the reader.

As an immediate consequence of Propositions 3.12 and 3.14 we find

Corollary 3.15. Let f be defined on the interval [a, b]. Suppose that we
can partition the interval into a finite number of intervals such that f is
non-increasing or non-decreasing on each of them. Then f is integrable on
[a, b].

We can also extend Theorem 3.10.

Definition 3.16. Suppose that f is defined on an interval [a, b]. We call f
piecewise continuous if there is a partition

a = x0 < x1 < · · · < xn−1 < xn = b

such that f is continuous on the open intervals (xj−1, xj) for all 1 ≤ j ≤ n,
and the one-sided limits (see Section 1.3)

lim
x→x+

j−1

f(x) and lim
x→x−j

f(x).

exist and are finite.

Corollary 3.17. If f is a piecewise contiuous function on [a, b], then f is
integrable on [a, b].

Idea of Proof. According to Proposition 3.14 we may break the problem up,
and consider it over each of the intervals [xj−1, xj] separately. On each of
these smaller intervals, we can change the defintion of the function at a point
or two and make it continuous. This changes neither the integrability nor
the value of the integral. So the assertion follows from Theorem 3.10.
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Definition 3.18. Let f be defined and integrable on the interval [a, b]. Then∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

This definition is convenient and consistent with what we have said so
far about the integral. The approach to integrals via lower and upper sums
could also be generalized to include integrals

∫ b
a where b < a, leading to

exactly this formula.
Using the definition of the integral it is not difficult to show:

Proposition 3.19. Let [a, b] be a closed interval and c a scalar. Suppose
that f and g are integrable over the interval. Then f+g and cf are integrable
over [a, b] and∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx

and ∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx.

We mention a few useful estimates for integrals.

Proposition 3.20. If f is integrable over [a, b], and f(x) ≥ 0 for all x ∈
[a, b], then ∫ b

a
f(x) dx ≥ 0.

Proof. The proof is left to the reader.

Corollary 3.21. If h and g are integrable over [a, b], and g(x) ≥ h(x) for
all x ∈ [a, b], then ∫ b

a
g(x) dx ≥

∫ b

a
h(x) dx.

Proof. Use that f(x) = g(x)− h(x) ≥ 0 for all x ∈ [a, b].

Proposition 3.22. Let [a, b] be a closed interval and f integrable over [a, b].
Then the absolute value of f is integrable over [a, b], and∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx.(3.6)

The proof of this proposition is elementary, though a bit tricky.
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3.6 Areas and Integrals

Let us return to the relation between areas and integrals. Suppose f(x) is
a non-negative integrable function over an interval [a, b]. If Ω is the area
bounded by the graph of f(x), the x-axis, and the lines x = a and x = b,
then

Area(Ω) =
∫ b

a
f(x) dx.

The question is, what happens if f(x) is not non-negative?
Let f be a function which is defined and bounded on a closed interval

[a, b] and Ω the set of points which lie between the graph of f(x) and the
x-axis for a ≤ x ≤ b. We decompose Ω into the union of two sets, Ω+

and Ω−. Specifically, Ω+ consist of those points (x, y) in the plane for which
a ≤ x ≤ b and 0 ≤ y ≤ f(x), and Ω− of those points for which a ≤ x ≤ b and
f(x) ≤ y ≤ 0. Then Ω is the union of the sets Ω+ and Ω−. We decompose
the region between the x-axis and the graph into the part Ω+ above the
x-axis and the part Ω− below it. Making use of this notation, we have:

Proposition 3.23. If f is integrable, then the areas of the regions Ω+ and
Ω− are defined2 and∫ b

a
f(x) dx = Area(Ω+)−Area(Ω−).(3.7)

Idea of Proof. We define two functions:

f+(x) =

{
f(x) if f(x) ≥ 0
0 if f(x) ≤ 0

and f−(x) =

{
f(x) if f(x) ≤ 0
0 if f(x) ≥ 0

It is elementary, though a bit tricky, to show that the integrability of f(x)
implies the integrability of f+(x) and f−(x). Apparently, f = f+ + f−, so
that the additivity of the integral implies that∫ b

a
f(x) dx =

∫ b

a
f+(x) dx +

∫ b

a
f−(x) dx.(3.8)

According to Definition 3.7 we have

Area(Ω+) =
∫ b

a
f+(x) dx.(3.9)

2If you want to be formal, then you have to flip the region Ω− to lie above the x-axis.
Only then have we addressed the question of it having an area.
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Let −Ω− be the area obtained by flipping Ω− up, i.e., we take its mirror
image along the x-axis. This process does not change areas, so Area(Ω−) =
Area(−Ω−). The function −f−(x) is non-negative, and −Ω− is bounded by
the graph of −f−(x), the x-axis, and the lines x = a and x = b. According
to Definition 3.7 and our elementary properties of the integral we have

Area(Ω−) = Area(−Ω−) =
∫ b

a
−f−(x) dx = −

∫ b

a
f−(x) dx.(3.10)

Our claim follows now by substituting the results in (3.9) and (3.10) into
(3.8).

For example,
∫ π/2
−π/2 sin x dx = 0 because the graph bounds congruent

regions above and below the x-axis.

3.7 Anti-derivatives

Consider a function f(x) with domain I. In Definition 2.6 we called a func-
tion F (x) with domain I an antiderivative of f(x) if F ′(x) = f(x). Having
an anti-derivative of a function will (typically) make it easy to integrate it
over a closed interval.

Remember that any antiderivatives F1 and F2 of a function f on an
interval I differ only by a constant (see Corollary 2.5). In other words,
there exists a constant c, such that

F1(x) = F2(x) + c for all x ∈ I.

Definition 3.24. Let f be a function which is defined on an interval I, and
suppose that f has an antiderivative. The set of all antiderivatives of f is
called the indefinite integral of f . It is denoted by∫

f(x) dx.

Given a function f and an antiderivative F of it, we typically write∫
f(x) dx = F (x) + c.(3.11)

In this expression c stands for an arbitrary constant. Different values for c
result in different functions. Allowing all real numbers as possible values for
c, we understand the the right hand side of (3.11) as a set of functions. The
constant c in the expression is referred to as integration constant.
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Example 3.25. Given a function f(x) we might know or guess a function
F (x), such that F ′(x) = f(x). Then we can write down the indefinite
integral of f in the form F (x) + c. You can check the correctness of your
guess by differentiation. You may want to consult Table 1.3 on page 63 to
come up with ideas for antiderivatives. Here are some examples.

∫
1 dx = x + c∫ √
x dx =

2
3
x3/2 + c∫

sin x dx = − cos x + c∫
cos x dx = sin x + c∫

dx

1 + x2
= arctan x + c

∫
x dx =

1
2
x2 + c∫

xn dx =
1

n + 1
xn+1 (n 6= −1)∫

sec2 x dx = tan x + c∫
secx tan x dx = sec x + c∫

dx√
1− x2

= arcsin x + c

Using the linearity of the differentiation (see the differentiation rules
in (1.20)), it is easy to produce more examples. E.g.∫

5x2 − 2 cos x dx =
5
3
x3 − 2 sin x + c.

Occasionally, an additional idea is required before we can see the anti-
derivative. E.g., using the trigonometric identity cos2 x = (1 + cos 2x)/2,
we find that∫

cos2 x dx =
1
2

∫
(1 + cos(2x)) dx =

1
2

[
x +

1
2

sin(2x)
]

+ c.

Using a different trigonometric identity we find∫
(1 + cot2 x) dx =

∫
csc2 x dx = − cot x + c. ♦

We shall explore additional ideas for finding antiderivatives at a later.
The reader may practice finding some antiderivatives for the functions in
the next exercise. As you go through them you are expected to learn, or
pick up some new ideas as you go along.
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Exercise 46. Find the following indefinite integrals:

(a)
∫

3 dx

(b)
∫

(x + 4) dx

(c)
∫

(x2 − 5) dx

(d)
∫

cos 2x dx

(e)
∫

(3 + x)3 dx

(f)
∫

(3 + 2x)5 dx

(g)
∫

1
x3

dx

(h)
∫

csc2 x dx

(i)
∫

(1 + tan2 x) dx

(j)
∫

cscx cot x dx

(k)
∫

sin2 x dx

(l)
∫

sec2(3x) dx

(m)
∫

ex/3 dx

(n)
∫

2x
x2 + 1

dx

(o)
∫

(4− 3x)5 dx

(p)
∫

cos(4− 3x) dx

(q)
∫

2x
(x2 + 3)2

dx

(r)
∫

x sec2(x2 + 5) dx

3.8 The Fundamental Theorem of Calculus

Our first result provides us with a large class of functions which have an-
tiderivatives.

Theorem 3.26. Continuous functions, defined over intervals, have anti-
derivatives. More specifically, suppose that a function f is defined and con-
tinuous over the interval I. Let a ∈ I. Then

f(x) =
d

dx

∫ x

a
f(t) dt

for all x ∈ I.

The major tool for calculating integrals, and the grand conclusion of our
discussion of antiderivatives is the Fundamental Theorem of Calculus.

Theorem 3.27 (Fundamental Theorem of Calculus). Suppose that f
is a continuous function over a closed interval [a, b] and that F is an an-
tiderivative of f . Then ∫ b

a
f(x) dx = F (b)− F (a).

For example, F (x) = − cos x is an antiderivative of f(x) = sinx, so that
the Fundamental Theorem of Calculus tells us that∫ π

0
sinx dx = − cos(π)− (− cos(0)) = −(−1)− (−1) = 2.



3.8. THE FUNDAMENTAL THEOREM OF CALCULUS 125

As another example, note that F (x) = tan x is an anti-derivative of f(x) =
sec2 x, so that the Fundamental Theorem of Calculus tells us that∫ π/4

0
sec2 x dx = tan(π/4) − tan(0) = 1.

Remark 11 (Notational Convention). One commonly uses the nota-
tion

F (x)
∣∣∣b
a

= F (b)− F (a).

This is quite convenient. E.g., we write

sin x
∣∣∣π
0

= sinπ − sin 0.

If there are ambiguities due to the length of the expression to which this
construction is applied, we also use the notation shown in the following
example: [

x3 − 5x2 + 2x− 8
]5
3

= p(5)− p(3)

where p(x) = x3 − 5x2 + 2x− 8.

Using this notation, we calculate that∫ 3

−2
(x2 − 2x + 5) dx =

[
x3

3
− x2 + 5x

]3

−2

=
95
3

.

Other examples are∫ π/4

0
secx tan x dx = sec x

∣∣∣π/4

0
=
√

2− 1

and∫ π/3

π/4
csc x cot x dx = − csc x

∣∣∣π/3

π/4
=

(
−2
√

3
3

)
− (−

√
2) =

√
2− 2

√
3

3
.

The reader is invited to practice a few examples.
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Exercise 47. Evaluate the following definite integrals:

(a)
∫ 1

0
(3x + 2) dx

(b)
∫ 2

1

6− t

t3
dt

(c)
∫ 5

2
2
√

x− 1 dx

(d)
∫ 0

1
(t3 − t2) dt

(e)
∫ π/4

π/6
csc x cot x dx

(f)
∫ −1

−1
7x6 dx

(g)
∫ π

0

1
2

cos x dx

(h)
∫ π

0
cos(x/2) dx

(i)
∫ 2

−2
|x2 − 1| dx

(j)
∫ π/2

0
cos2 x dx

(k)
∫ π/2

0
sin2(2x) dx

(l)
∫ π/4

0
sec2 x dx

3.8.1 Some Proofs

Because of their importance, we like to prove Theorem 3.26 and the Funda-
mental Theorem of Calculus.

Proof of the Fundamental Theorem of Calculus. Essentially, the desired re-
sult is an easy consequence of Theorem 3.26. Let F (x) be any anti-derivative
of f(x) on I, and H(x) =

∫ x
a f(t) dt the one provided by Theorem 3.26. In

particular, F ′(x) = H ′(x) = f(x). Cauchy’s Theorem (see its application in
Corollary 2.5) tells us that F and H differ by a constant. For some constant
c and all x ∈ I:

H(x) =
∫ x

a
f(t) dt = F (x) + c(3.12)

We can find out the value for c by substituting x = a in this equation. In
particular, we find that∫ a

a
f(t) dt = 0 = F (a) + c or c = −F (a).

Using this calculation of c and substituting x = b in (3.12), we obtain∫ b

a
f(t) dt = F (b)− F (a),

as claimed.
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Proof of Theorem 3.26. Because we assumed continuity of f on the interval
I, it follows from Theorem 3.10 that

F (x) =
∫ x

a
f(t) dt

exists. So it is our task to show that F is differentiable at x, and that
F ′(x) = f(x). Using Theorem 1.26, after adjusting the notation to fit the
current setting, the task becomes to show that

f(x) = lim
h→0

F (x + h)− F (x)
h

= lim
h→0

1
h

[∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

]
= lim

h→0

1
h

∫ x+h

x
f(t) dt.

Here we assume that x is not an endpoint of I, so that x and x+h are both
in I. We omit (leave to the reader) the modifications of the proof which are
required in the case where x is an endpoint of I.

According to the Extreme Value Theorem (see Theorem 1.17) there are
points c and d between x and x + h, such that

f(c) = m(h) ≤ f(x) ≤ f(d) = M(h)(3.13)

for all t between x and x + h. The points c and d may not be uniquely
determined by h, but m and M are. It follows from (3.13) and Corollary 3.21
that

m(h) · h =
∫ x+h

x
m(h) dt ≤

∫ x+h

x
f(t) dt ≤

∫ x+h

x
M(h) dt = M(h) · h,

and with this that

m(h) ≤ 1
h

∫ x+h

x
f(t) dt ≤ M(h).

Continuity of f(x) implies that

lim
h→0

m(h) = f(x) = lim
h→0

M(h).

It follows from a pinching argument (see Proposition 1.4) that

lim
h→0

∫ x+h

x
f(t) dt = f(x),

and this is exactly what we needed to show.
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3.9 Substitution

In some cases it is not that easy to ‘see’ an antiderivative of the function one
likes to integrate. Substitution is a method which, when applied correctly,
will simplify the expression for the function you like to integrate. You hope
that you can find an antiderivative for the simplified expression. The method
is based on the chain rule for differentiation. Sometimes this method is
helpful, other times it is not. Your success with this method depends greatly
on experience, i.e., practice.

We explain the method. Let F and g be functions which are defined and
differentiable on an interval I. Set F ′ = f . Then, according to the chain
rule,

d

dx
F (g(x)) = f(g(x))g′(x).

Assume that f and g′ are continuous on I. Then f(g(x))g′(x) is continuous
as well. We may take antiderivatives of both sides of our previous equation,
and conclude that ∫

f(g(x))g′(x) dx = F (g(x)) + c.(3.14)

The variable for the functions f and F is often called u, and this means in
context that u = g(x).

Let us give a few examples to illustrate how this method can be put
to use. There are no general rules what substitution must be used, rather
success justifies the means. Working through the examples will teach you
how to apply this method in some typical situations. It will give you at least
some experience which you may then rely on in similar examples.

For example,∫
(2x− 3)3 dx =

1
2

∫
(2x− 3)3 · 2dx =

1
8
(2x− 3)4 + c.

Here we used g(x) = 2x− 3, g′(x) = 2, f(u) = u3, and F (u) = u4

4 .
There is a pattern, a way to use the notation, which can be applied to

write down the steps in an integration using substitution efficiently. Setting
u = g(x) we write

du = g′(x)dx,
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instead of g′(x) = du/dx3. Suppose also that F is an anti-derivative of f ,
so F ′ = f . Then the pattern for calculating an integral via substitution is∫

f(g(x))g′(x) dx =
∫

f(u) du = F (u) + c = F (g(x)) + c.(3.15)

In the first step of this calculation we carry out the substitution, in the
second one we find the anti-derivative, and in the third one we reverse the
substitution. We make use of this notation in our next example.

For example, we calculate that∫
x
√

x2 + 2 dx =
1
2

∫ √
x2 + 2 · 2xdx

=
1
2

∫ √
u du

=
1
3
u3/2 + c

=
1
3
(x2 + 2)3/2 + c.

We used the substitution u = x2 + 2. Then du
dx = 2x, or du = 2xdx.

We calculate that∫
t2(t + 1)7 dt =

∫
(u− 1)2u7 du

=
∫

(u2 − 2u + 1)u7 du

=
∫

(u9 − 2u8 + u7) du

=
1
10

u10 − 2
9
u9 +

1
8
u8 + c

=
1
10

(t + 1)10 − 2
9
(t + 1)9 +

1
8
(t + 1)8 + c.

Here we used the substitution u = t + 1. Then du = dx and t = u− 1.
We may have to use a substitution and a trigonometric identity to solve

3We do not attach any particular meaning to the symbols dx and du in their own right.
The equation du = g′(x)dx helps us to write down what happens when we perform the
substitution as in the first equality in (3.15). Thought of as infinitesimals or differentials,
these symbols have a meaning, but this is beyond the scope of these notes.
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an integration problem:∫
2x sin2(x2 + 5) dx =

∫
sin2 u du

=
1
2

∫
[1− cos 2u] du

=
1
2

[
u− 1

2
sin 2u

]
+ c

=
1
2

[
(x2 + 5)− 1

2
sin[2(x2 + 5)]

]
+ c.

We used the substitution u = x2 + 5, so that du = 2xdx and the identity
sin2 α = [1− cos 2α]/2.

Find the substitution which we used in the following computation, and
check the details:∫

sec2 x tan x dx =
∫

sec x · sec x tan x dx

=
∫

u du

=
1
2
u2 + c

=
1
2

sec2 x + c.

Sometimes we have to apply the method of substitution twice, or more
often, to work out an integral. Here is an example.∫

(x2 + 1) sin3(x3 + 3x− 2) cos(x3 + 3x− 2) dx =
1
3

∫
sin3 u cos u du

=
1
3

∫
v3 dv

=
1
12

v4 + c

=
1
12

sin4 u + c

=
sin4(x3 + 3x− 2)

12
+ c

In the computation we used the substitution u = x3 + 3x − 2. Then du =
3(x2 +1) dx. In a second substitution we set v = sin u. Then dv = cos u du.



3.9. SUBSTITUTION 131

Here are two examples, which are important in the context of integrating
rational functions. In the first example we assume that a 6= 0, and we use
the subsitution x = au. The dx = adu.∫

dx

x2 + a2
dx =

∫
adu

a2u2 + a2

=
1
a

∫
du

u2 + 1

=
1
a

arctan(u) + c

=
1
a

arctan
(x

a

)
+ c

Adding another idea, we calculate∫
dx

x2 + 2x + 5
=
∫

dx

(x + 1)2 + 4
=
∫

du

u2 + 4
=

1
2

arctan
(

x + 1
2

)
+ c.

We used the substitution u = x+1, and then we proceeded as in the previous
example.

3.9.1 Substitution and Definite Integrals

Let us now explore how substitution is used to calculate definite integrals.
Assuming as before that f and g′ are continuous on the interval [a, b], we
have ∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du.(3.16)

To see this, observe that f has an anti-derivative, which we again denote
by F . Then∫ b

a
f(g(x))g′(x) dx = F (g(x))

∣∣∣b
a

= F (u)
∣∣∣g(b)

g(a)
=
∫ g(b)

g(a)
f(u) du.

The first identity is obtained as a combination of the Fundamental Theorem
of Calculus and (3.14). The second one is obvious, and the third one is
another application of the Fundamental Theorem of Calculus.

Let us apply this formula in a few examples.

∫ 1

0
(x2 − 1)(x3 − 3x + 5)3 dx =

1
3

∫ 3

5
u3 du =

1
12

u4
∣∣∣3
5

= −136
3

.
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We used the substitution u = x3 − 3x + 5. Then du = (3x2 − 3) dx, and
1
3du = (x2−1) dx. To obtain the limits for the integral we calculate u(0) = 5
and u(1) = 3.

Another example is∫ π/4

0
cos2 x sin x dx = −

∫ √
2/2

1
u2 du = −1

3
u3
∣∣∣√2/2

1
= −1

3

[
1−

√
2

4

]
.

We use the substitution u = cos x. Then −du = sinx dx. If x = 0, then
u = 1, and if x = π/4, then u =

√
2/2.

Incorporating one of our previous techniques, we calculate∫ 2

0
x(x + 1)6 dx =

∫ 3

1
(u− 1)u6 du =

∫ 3

1
u7 − u6 du =

3554
7

.

We use the substitution u = x + 1. Then du = dx and x = u− 1. If x = 0,
then u = 1, and if x = 2, the u = 3.

Similarly,∫ √
8

0
x3
√

x2 + 1 dx =
1
2

∫ 9

1
(u− 1)

√
u du =

1
2

∫ 9

1

(
u3/2 − u1/2

)
du =

596
15

.

We use the substitution u = x2 + 1. Then 1
2du = x dx and x2 = u− 1. For

the limits we calculate, if x = 0, then u = 1, and if x =
√

8, then u = 9.
Finally,∫ 1

0

√
1− x2 dx =

∫ π/2

0

√
1− sin2 u cos u du =

∫ π/2

0
cos2 u du =

π

4
.

We use the substitution x = sin u. Then dx = cos u du. If x = 0, then
u = 0, and if x = 1, then u = π/2. For our given values of x, there are other
possible values for u, but they will lead to the same results.

Remark 12. The graph of f(x) =
√

1− x2 is the northern part of a circle.
Using x ∈ [0, 1] means that we calculated the area under this graph in the
first quadrant, i.e., the area of one forth of the disk of radius 1. You were
told long time ago in school, that the area of this unit disk is π, so that the
result of the calculation is hardly surprising.

There is a more serious matter. Is the example genuine, or did we assume
the answer previously? By definition, π is the ratio of the circumference of
a circle by its diameter. In our calculation of the derivative of the sine and
cosine functions we used the estimate that | sin h − h| ≤ h2/2. When we
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showed this, we used that |h| ≤ | tan h| for h ∈ [−π/4, π/4]. A typical proof
of the latter inequality starts out by first showing that the area of the unit
disk is π. This means, we assumed the result in the example, we did not
derive it.

Exercise 48. Find the following integrals:

(a)
∫

dx√
2x + 1

(b)
∫

t

(4t2 + 9)2
dt

(c)
∫

t(1 + t2)3 dt

(d)
∫

2s
3
√

6− 5s2
ds

(e)
∫

b3x3

√
1− a4x4

dx

(f)
∫ π

0
x cos x2 dx

(g)
∫

x2
√

x + 1 dx

(h)
∫

x + 3√
x + 1

dx

(i)
∫

sin2(3x) dx

(j)
∫ π/2

0
cos2 x dx

(k)
∫ π/4

π/6
sec(2x) tan(2x) dx

(l)
∫ 1/2

0

dx

4 + x2

(m)
∫

sec2 x√
1 + tan x

dx

(n)
∫ √

1 + sinx cos x dx

(o)
∫ r

0

√
r2 − x2 dx

3.10 Areas between Graphs

Previously we related the integral to areas of a region under a graph. This
idea can be generalized to the discussion of areas of regions between two
graphs. Let us look at an example.

Example 3.28. Calculate the area of the region between the graphs of the
functions f(x) = x2 and g(x) =

√
1− x2.

Solution To get a better understanding, we draw the two graphs, see
Figure 3.13. Now you see the region between the two graphs whose area we
want to calculate. We call the region Ω.

The graphs intersect in two points. To find their x-coordinates, we solve
the equation

f(x) = x2 = g(x) =
√

1− x2.

After squaring the equation and solving it for x2, we find x2 = −1±√5
2 .

Only the + sign occurs as x2 ≥ 0. Taking the square root, we find the
x-coordinates of the points where the curves intersect:

A = −
√
−1 +

√
5

2
and B =

√
−1 +

√
5

2
.
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Figure 3.13: Region between two
graphs
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Figure 3.14: Region between two
graphs

To get the area of the region under the graph of f(x) and g(x) over the
interval [A,B] we can calculate the appropriate integrals. To get the area of
the region Ω between the graphs, we take the area of the region under the
graph of g(x) and subtract the area of the region under the graph of f(x).
Concretely:

Area(Ω) =
∫ B

A
g(x) dx−

∫ B

A
f(x) dx =

∫ B

A
(g(x) − f(x)) dx ≈ 1.06651.

The numerical value was obtained by computer. You are invited to work
out the integral with the help of the Fundamental Theorem of Calculus to
verify the result. ♦

Some problems are a bit more subtle.

Example 3.29. Find the area of the region between the graphs of the func-
tions f(x) = cos x and g(x) = sin x for x between 0 and π.

Solution: The region Ω between the graphs is shown in Figure 3.14.
The region breaks up into two pieces, the region Ω1 over the interval [0, π/4]
on which f(x) ≥ g(x), and the region Ω2 over the interval [π/4, π] where
g(x) ≥ f(x). We calculate the areas of the regions Ω1 and Ω2 separately.
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In each case, we proceed as in the previous example:

Area(Ω1) =
∫ π/4

0
(cos x− sin x) dx = (sin x + cos x)

∣∣∣π/4

0
=
√

2− 1

Area(Ω2) =
∫ π

π/4
(sin x− cos x) dx = −(sin x + cos x)

∣∣∣π
π/4

= 1 +
√

2.

In summary we find:

Area(Ω) = Area(Ω1) + Area(Ω2) = 2
√

2.

An additional remark may be in place. When we compared integrals and
areas, we had to take into account where the function is non-negative, resp.,
non-positive. Here we did not. We took care of this aspect by breaking up
the interval into the part where f(x) ≥ g(x) and the part where g(x) ≥ f(x).
♦

Our general definition for the area between two graphs is as follows.

Definition 3.30. Suppose f(x) and g(x) are integrable functions over an
interval [a, b]. Let Ω be the region between the graphs of f(x) and g(x) for
x between a and b. The area of Ω is

Area(Ω) =
∫ b

a
|f(x)− g(x)| dx.

This definition generalizes Definition 3.7 on page 114. The definition is
also consistent with the intuitive idea of the area of a region, and it incor-
porates and generalizes Proposition 3.23 on page 121. Taking the absolute
value of the difference of f(x) and g(x) allows us avoid the question where
f(x) ≥ g(x) and where g(x) ≥ f(x). Typically this problem gets addressed
when the integral is calculated. In some problems a and b are explicitly
given, in others you have to determine them from context. In all cases it is
good to graph the functions before calculating the area of the region between
them. Having the correct picture in mind helps you to avoid mistakes.

Exercise 49. Sketch and find the area of the region bounded by the curves:

(a) y = x2 and y = x3.

(b) y = 8− x2 and y = x2

(c) y = x2 and y = 3x + 5.

(d) y = sin x and y = πx− x2.

(e) y = sin x and y = 2 sin x cos x for x between 0 and π.
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3.11 Numerical Integration

The Fundamental Theorem of Calculus provided us with a highly efficient
method for calculating definite integrals. Still, for some functions we have
no good expression for its anti-derivative. In such cases we may have to
rely on numerical methods for integrating. Let us take such a function, and
show some methods for finding an approximate value for the integral.

We describe different ways to find, by numerical means, approximate
values for the integral of a function f(x) over the interval [a, b]:∫ b

a
f(x) dx.

In all of the different approaches we partition the interval into smaller ones:

a = x0 < x1 < · · · < xn−1 < xn = b.

Left and Right Endpoint Method: In the left endpoint method we
find the value of the function at each left endpoint of the intervals of the
partition. We multiply it with the length of the associated interval, and
then add up the terms. Explicitly, we calculate

IL = f(x0)(x1 − x0) + f(x1)(x2 − x1) + · · · + f(xn−1)(xn − xn−1).(3.17)

In the right endpoint method we proceed as we did on the left endpoint
method, only we use the value of the function at the right endpoint instead
of the left endpoint:

IR = f(x1)(x1 − x0) + f(x2)(x2 − x1) + · · ·+ f(xn)(xn − xn−1).(3.18)

Both expressions provide us with specific examples of Riemann sums.

Example 3.31. Use the left and right endpoint method to find approximate
values for ∫ 2

0
e−x2

dx.

Solution: Set f(x) = e−x2
and choose the partition:

x0 = 0 < x1 =
1
2

< x2 = 1 < x3 =
3
2

< x4 = 2.
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Then xk−xk−1 = 1/2 for k = 1, 2, 3, and 4. Formula (3.17) for IL specializes
to

IL =
f(0) + f(1/2) + f(1) + f(3/2)

2
≈ 1.126039724.

Formula (3.18) for IR specializes to

IR =
f(1/2) + f(1) + f(3/2) + f(2)

2
≈ .6351975438.
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Figure 3.15: Use left end points
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Figure 3.16: Use right end points

Apparently, IL and IR are calculated by combining the areas of certain
rectangles. In our case the values of f(x) are all positive and all of the
rectangles are above the x axis, so the areas of the rectangles are all added.
Note also, that our specific function f(x) is decreasing on the interval [0, 2],
so that IL is an upper sum for the function f(x) over the interval [0, 2], and
IR is a lower sum. In this sense, we have

IR = .6351975438 ≤
∫ 2

0
e−x2

dx ≤ IL = 1.126039724.

The function and the rectangles whose areas are added to give us IL and IR

are shown in Figure 3.15 and Figure 3.16. ♦

Midpoint and Trapezoid Method: We may try and improve on the
endpoint methods. In the midpoint methods, we use the value of the function
at the midpoints of the intervals of the partition. That should be less bias.
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We use the same partition and notation as above. Then the formula for the
midpoint method is:

IM = f

(
x0 + x1

2

)
(x1 − x0) + · · ·+ f

(
xn + xn−1

2

)
(xn − xn−1).(3.19)

In the trapezoid method we do not take the function at the average (i.e.
midpoint) of the end points of the intervals in the partition, but we average
the values of the function at the end points. Specifically, the formula is

IT =
f(x0) + f(x1)

2
(x1 − x0) + · · ·+ f(xn−1) + f(xn)

2
(xn − xn−1).(3.20)

It is quite easy to see that

IT =
IL + IR

2
.(3.21)

Let us explain the reference to the word trapezoid. For simplicity, sup-
pose that f(x) is non-negative on the interval [a, b]. Consider the trapezoid
of width (x1 − x0) which has height f(x0) at its left and f(x1) at its right
edge. The area of this trapezoid is f(x0)+f(x1)

2 (x1 − x0). This is the first
summand in the formula for IT , see (3.20). We have such a trapezoid over
each of the intervals in the partition, and their areas are added to give IT .

Expressed differently, we can draw a secant line through the points
(x0, f(x0)) and (x1, f(x1)). This gives us the graph of a function T (x)
over the interval [x0, x1]. Over the interval [x1, x2] the graph of T (x) is the
secant line through the points (x1, f(x1)) and (x2, f(x2)). Proceeding in
the fashion, we use appropriate secant lines above all of the intervals in the
partition to define the function T (x) over the entire interval [a, b]. Then

IT =
∫ b

a
T (x) dx.

This integral is easily computed by the formula in (3.20).

Example 3.32. Use the midpoint and trapezoid method to find approxi-
mate values for ∫ 2

0
e−x2

dx.

Solution: We use the same partition of [0, 2] as in Example 3.31. The
formula for IM (see (3.19)) specializes to

IM =
f(.25) + f(.75) + f(1.25) + f(1.75)

2
≈ .8827889485.
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As for the endpoint methods, IM is the combined area of certain rectangles.
Their heights are the values f(xi) at the midpoints of the intervals of the
partition. Their width are the lengths of the intervals of the partition. You
see the rectangles for this calculation in Figure 3.17.
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Figure 3.17: Use midpoints
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Figure 3.18: Trapezoid Method

Based on our previous calculations and Formula (3.21) we find

IT =
IL + IR

2
≈ .8806186341.

We illustrated this calculation in Figure 3.18. There you see the function
f(x) = e−x2

and five dots on the graph. The dots are connected by straight
line segments. These line segments form the graph of a function T (x), and
IT is the area of the region under this graph. So

IT =
∫ 2

0
T (x) dx. ♦

Simpson’s Method: In Simpson’s method we combine the endpoint
and midpoint methods in a weighted fashion. Again, we use the same no-
tation for the function and the partition as above. The specific formula for
an approximate value of the integral of f(x) over [a, b] is

IS =
1
6

[
f(x0) + 4f

(
x0 + x1

2

)
+ f(x1)

]
(x1 − x0) + · · ·

+
1
6

[
f(xn−1) + 4f

(
xn−1 + xn

2

)
+ f(xn)

]
(xn − xn−1)

(3.22)
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It is quite easy to see that

IS =
IL + 4IM + IR

6
=

IT + 2IM

3
.

Let us explain the background to Simpson’s method. We define a func-
tion P (x) over the interval [a, b] by defining a degree 2 polynomial on each
of the intervals of the partition. The polynomial over the interval [xk−1, xk]
is chosen so that it agrees with f(x) at the end points and at the midpoint
of this interval. Simpson’s method is a refinement of the Trapezoid method.
In one method we use two points on the graph and connect them by a
straight line segment. In the other one we use three points on the graph and
construct a parabola through them. With some work one can show that

IS =
∫ b

a
P (x) dx.
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Figure 3.19: Simpson’s Method

Example 3.33. Use Simpson’s method to find an approximate value for∫ 2

0
e−x2

dx.
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Solution: We use the same partition of [0, 2] as in Example 3.31. The
formula for IS (see the special case of (3.22)) specializes to

IS =
IL + 4IM + IR

6
≈ .88206555104,

where IL, IM and IR are as above.
You see the method illustrated in Figure 3.19. There you see the graphs

of two functions, the function f(x) = e−x2
and the function P (x) from the

discussion of Simpson’s method. Only the thickness of the line suggests that
there are two graphs of almost identical functions. ♦
Example 3.34. Compare the accuracy of the various approximate values
of ∫ 2

0
e−x2

dx.

Solution: We compare the approximate values for the integral obtained
by the different formulas. We partition the interval [0, 2] into n intervals
of the same length, and vary n. We tabulate the results. They should be
compared with an approximate value for the integral of

0.882081390762421.

n = 1 n = 10 n = 100 n = 1000

IL 2.0000000 0.9800072469 0.891895792451 0.883063050702697

IR 0.0366313 0.7836703747 0.872262105229 0.881095681980474

IM 0.7357589 0.8822020700 0.882082611663 0.882081402972833

IT 1.0183156 0.8818388108 0.882078948840 0.882081366341586

IS 0.8299445 0.8820809836 0.882081390722 0.882081390762417

Table 3.1: Approximate Values of the Integral

Simpson’s method is more accurate than the other ones. E.g., Simpson’s
method with n = 4 gives a result which is better than the left and right
endpoint method with n = 1000. Even if you use the midpoint and trapezoid
method with n = 1000, then the result is far less accurate that Simpson’s
method with n = 100. ♦
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Remark 13. It is important that we keep the number n of intervals into
which we partition [a, b] small. It does not only keep the number of overall
computations small. In each computational step we expect to make a round-
off error, and these may add up. The fewer computations we make, the
smaller the cummulative round-off error will be.

Exercise 50. Proceed as in Example 3.34 and compare the different meth-
ods applied to the calculation of∫ π/2

0
sin x dx = 1.

3.12 Applications of the Integral

In Definition 3.7 and Proposition 3.23 we related definite integrals to areas.
Based on the context, this can have a more concrete meaning. Consider a
function f(t) on an interval [a, b] and the integral

I =
∫ b

a
f(t) dt.

If f(t) stands for the rate at which a drug is absorbed, then I is the total
amount of the drug which has been absorbed in the time interval [a, b]. If
f(t) stands for the speed with which you travel, then I stands for the total
distance which you traveled during the time interval [a, b]. You are invited
to come up with more interpretations. In addition, the following definition
expresses the common notion of the average value of a function.

Definition 3.35. Suppose that f(t) is an integrable function over the in-
terval [a, b]. Then the quantity

fav :=
1

b− a

∫ b

a
f(t) dt

is called the average value of f(t) over the interval [a, b].

For example, the average value of the sine function f(x) = sinx over the
interval [0, π] is 2/π.

Let us explore the different aspects of integration in an example.

Example 3.36. The river Little Brook flows into a reservoir, referred to
as Beaver Pond by the locals. The amount of water carried by the river
depends on the season. As a function of time, it is

g(t) = 2 + sin
(

πt

180

)
.
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We measure time in days, and t = 0 corresponds to New Year. The units
of g(t) are millions of liter of water per day. Water is released from Beaver
Pond at a constant rate of 2 million liters per day. At the beginning of the
year, there are 200 million liters of water in the reservoir.

(a) How many liter of water are in Beaver Pond by the end of April?

(b) Suppose F (t) tells how much water there is in the reservoir on day t
of the year. Find F (t).

(c) At which rate does the amount of water in the reservoir change at the
beginning of September?

(d) On which days will there be 250 million liters of water in Beaver Pond?

(e) At which amount of water will the reservoir crest?

(f) On the average, by how much has the amount of water in Beaver Pond
increased per day during the first three months of the year?

Solution: Water enters and leaves the pond. The net rate entering is

f(t) = g(t)− 2 = sin
(

πt

180

)
millions of liters per day.

We obtain the total change of the amount of water in the reservoir by inte-
grating f(t). Set

A(T ) =
∫ T

0
f(t) dt.

On the T -th day of the year, the total amount of water in Beaver Pond is

F (T ) = 200 +
∫ T

0
f(t) dt = 200 +

180
π

[
1− cos

(
πT

180

)]
millions of liters.

This answers (b). By the end of April, after 120 days, there are

F (120) = 200 +
180
π

[
1− cos

2π
3

]
≈ 238.2

millions of liters of water in the pond. This answers (a).
The rate at which the amount of water in the pond changes is F ′(t) =

f(t). At the beginning of September, after 240 days, the rate of change is
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f(240) ≈ −.866. The pond is losing water at a rate of 866, 000 liters per
day.

To answer (d), we like to know for which T we have F (T ) = 250. We
solve the equation for T :

250 = 200 +
180
π

[
1− cos

(
πT

180

)]
or cos

(
πT

180

)
= 1− 5π

18
.

We apply the function arccos to both sides of the last equation and find

T =
180
π

arccos
(

1− 5π
18

)
≈ 88, or 272.

On the 88-th and 272-nd day of the year there will be 250 millions of liters
of water in the reservoir.

To find at which amount the reservoir crests, we have to find the max-
imum value of F (t). This occurs apparently when cos(πt/180) = −1 or
t = 180. The pond crests at mid-year, and then the amount of water in it
is about 314.6 millions of liters of water. This answers (e).

After three months or 90 days there are about 257.3 millions of liters
of water in Beaver Pond. Within this time, the amount of water has in-
creased by 57.3 millions of liters. On the average, the amount of water in
the reservoir increased by about 640,000 liters per day. ♦

Exercise 51. A pain reliever has been formulated such that it is absorbed
at a rate of 600 sin(πt) (mg/hr) by the body. Here t measures time in hours,
t = 0 at the time you take the medication, and the absorption process is
complete at time t = 1.

(a) What is the total amount of the drug which is absorbed?

(b) Find a function F (t), such that F (t) tells how much medication has
been absorbed at time t.

(c) A total of 150 mg of the medication has to be absorbed before the
drug is effective. How long does it take until this threshold is reached?

3.13 The Exponential and Logarithm Functions

In Section 1.10 we introduced the exponential function exp(x) = ex and the
natural logarithm function ln x. At the time we only stated that they exist
because we did not have the tools to properly define them. We will now fill
in the details. Many of the routine calculations are formulated as exercises.
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Definition 3.37. Let x ∈ (0,∞). The natural logarithm of x is defined as

ln x =
∫ x

1

dt

t
.(3.23)

Theorem 3.38. The natural logarithm function is differentiable on its en-
tire domain (0,∞), its derivative is

ln′ x =
1
x

,

and ln x is increasing on (0,∞).

Proof. The function 1/x is defined and continuous on (0,∞). According
to Theorem 3.10 this means that lnx is defined for all x in (0,∞). Theo-
rem 3.26 tells us that ln′ x = 1/x. According to Theorem 2.11, the function
is increasing because its derivative ln′ x > 0 for all x > 0.

Let us also verify one of the central equations for calculating with loga-
rithms, the third rule in Theorem 1.34.

Proposition 3.39. For any x, y > 0,

ln(xy) = ln x + ln y.(3.24)

Proof. We need a short calculation. Here x and y are fixed positive numbers.
We use the substitution u = t

x , so that du = 1
x dt. For the adjustment of

the limits of integration, observe that t/x = u = 1 when t = x, and that
t/x = u = y when t = xy. Then∫ xy

x

dt

t
=
∫ xy

x

1
(t/x)

1
x

dt =
∫ y

1

du

u
= ln y.

Using this calculation we deduce that

ln(xy) =
∫ xy

1

dt

t
=
∫ x

1

dt

t
+
∫ xy

x

dt

t
= ln x + ln y.

This is exactly our claim.

Exercise 52. Show:

(1) ln 1 = 0.

(2) ln(1/y) = − ln y for all y > 0.
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(3) ln(x/y) = ln x− ln y for all x, y > 0.

Exercise 53. Show that ln 4 > 1. Hint: Using the partition

1 = x0 < 2 = x1 < 3 = x2 < 4 = x3,

find a lower sum Sl for the function 1/t over the interval [1, 4] so that Sl > 1.

We can now define the Euler number:

Definition 3.40. The number Euler number e is the unique number such
that

ln e = 1 or, equivalently,
∫ e

1

dt

t
= 1.

For this definition to make sense, we have to show that there is a number
e which has the property used in the definition. To see this, observe that
ln 1 = 0 < 1 < ln 4. Because ln x is differentiable, it follows from the
Intermediate Value Theorem (see Theorem 1.16) that there is a number e
for which ln e = 1. It also follows that 1 < e < 4.

Proposition 3.41. For every real number x there exists exactly one positive
number y, such that

ln y = x(3.25)

Proof. Observe that ln(en) = n and ln(1/en) = −n for all natural num-
bers n. So all integers (whole numbers) are values of the natural logarithm
function. Every real number x lies between two integers. According to the
Intermediate Value Theorem, every real number is a value of the function
ln y. We saw that ln y is an increasing function. This means that, for any
given x, the equation ln y = x has at most one solution. Taken together it
means that it has a unique solution.

Exercise 54. Show that

ln(ar) = r ln a

for all positive numbers a and all rational numbers r, i.e., numbers of the
form r = p/q where p and q are integers and q 6= 0.

In summary, we have seen that

Corollary 3.42. The natural logarithm function ln x is a differentiable, in-
creasing function with domain (0,∞) and range (−∞,∞), and ln′ x = 1/x.



3.13. THE EXPONENTIAL AND LOGARITHM FUNCTIONS 147

We are now ready to define the exponential function.

Definition 3.43. Given any real number x, we define exp(x) to be the
unique number for which

ln(exp(x)) = x,(3.26)

i.e., y = exp(x) is the unique solution of the equation ln(y) = x. This
assignment (mapping x to exp(x)) defines a function, called the exponential
function, with domain (−∞,∞) and range (0,∞).

Exercise 55. Show that the exponential function exp and the natural log-
arithm function ln are inverses of each other. In addition to the equation in
(3.26), you need to show that

exp(ln(y)) = y(3.27)

for all y ∈ (0,∞).

Summarizing this discussion, and adding some observations which we
have made elsewhere, we have:

Proposition 3.44. The exponential function exp(x) is a differentiable, in-
creasing function with domain (−∞,∞) and range (0,∞), and the exponen-
tial function is its own derivative, i.e., exp′(x) = exp(x).

Exercise 56. Show for all real numbers x and y that:

(1) exp(0) = 1

(2) exp(1) = e

(3) exp(x) exp(y) = exp(x + y)

(4) 1/ exp(y) = exp(−y)

(5) exp(x)/ exp(y) = exp(x− y).

Hint: Use the results of Exercise 52, the definition of e in Definition 3.40,
and that the exponential and logarithm functions are inverses of each other.

Exercise 57. Show that exp(r) = er for all rational numbers r. Hint: Use
Exercise 54 and that the exponential and logarithm functions are inverses
of each other.
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The expression er makes sense only if r is a rational number. If r = p/q
then we raise e to the r-th power and take the q-th root of the result. For
an arbitrary real number we set

ex = exp(x).(3.28)

This is consistent with the meaning of the expression for rational exponents
due to Exercise 57, and it defines what we mean by raising e to any real
power.

3.13.1 Other Bases

So far we discussed the natural logarithm function and the exponential func-
tion with base e. We now expand the discussion to other bases.

Definition 3.45. Let a be a positive number, a 6= 1. Set

loga x =
ln x

ln a
and expa(x) = exp(x ln a).(3.29)

We call loga(x) the logarithm function with base a and expa(x) the expo-
nential function with base a. For the function loga we use the domain (0,∞)
and range (−∞,∞). For the exponential function expa we use the domain
(−∞,∞) and range (0,∞).

Exercise 58. Show

(1) ln a > 0 if a > 1 and ln a < 0 if 0 < a < 1.

(2) loga(x) and expa(x) are differentiable functions.

(3) loga(x) and expa(x) are increasing functions if a > 1.

(4) loga(x) and expa(x) are decreasing functions if 0 < a < 1.

Exercise 59. Suppose a > 0 and a 6= 1. Show that

(a) expa(loga(y)) = y for all y > 0.

(b) loga(expa(x)) = x for all real numbers x.

Taken together, the specifications for the domains and ranges for the
functions expa and loga and the results from Exercise 59 tell us that

Corollary 3.46. Suppose a > 0 and a 6= 1. The functions expa and loga

are inverses of each other.
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Exercise 60. Suppose a > 0 and a 6= 1. Show the laws of logarithms:

(a) loga 1 = 0 and logaa = 1.

(b) loga(xy) = loga x + loga y for all x, y > 0.

(c) loga(1/y) = − loga y for all y > 0.

(d) loga(x/y) = loga x− loga y for all x, y > 0.

Exercise 61. Suppose a > 0 and a 6= 1. Show the exponential laws:

(1) expa(0) = 1 and expa(1) = a

(2) expa(x) expa(y) = expa(x + y)

(3) 1/ expa(y) = expa(−y)

(4) expa(x)/ expa(y) = expa(x− y).

Exercise 62. Suppose a > 0, a 6= 1, and r is a rational number. Show

loga(a
r) = r and expa(r) = ar.

We rephrase a convention which we made previously for e. Suppose
a > 0 and a 6= 1. The expression ar makes sense if r is a rational number.
If r = p/q then we raise a to the r-th power and take the q-th root of the
result. For an arbitrary real number we set

ax = expa(x).(3.30)

This is consistent with the meaning of the expression for rational exponents
due to Exercise 62, and it defines what we mean by raising a to any real
power. Equation 3.30 specializes to the one in Equation 3.28 if we set a = e.
It is also a standard convention to set

1x = 1 and 0x = 0

for any real number x. Typically 00 is set 1.
We can now state an equation which is typically considered to be one of

the laws of logarithms:

Exercise 63. Suppose a > 0, a 6= 1, x > 0, and z is any real number. Then

loga(x
z) = z loga(x).
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We are now ready to fill in the details for one of the major statements
which we made in Section 1.10. We are ready to prove

Theorem 3.47. Let a be a positive number, a 6= 1. There exists exactly one
monotonic function, called the exponential function with base a and denoted
by expa(x), which is defined for all real numbers x such that expa(x) = ax

whenever x is a rational number.

Proof. In this section we constructed the function expa(x), and this function
has all of the properties called for in the theorem. That settles the existence
statement. We have to show the uniqueness statement, i.e., there in only
one such function.

Suppose f(x) is any monotonic function and f(r) = ar = expa(r) for
all rational numbers r. We have to show that f(x) = expa(x) for all real
numbers x. We leave the verification of this assertion to the reader. Here one
uses that f(x) and expa(x) are monotonic, and that expa(x) is continuous.



Chapter 4

Trigonometric Functions

In this section we discuss the radian measure of angles and introduce the
trigonometric functions. These are the functions sine, cosine, tangent, et. al.
We collect some formulas relating these functions.

Arc Length and Radian Measure of Angles: Consider the unit
circle (a circle with radius 1) centered at the origin in the Cartesian plane.
It is shown in Figure 4.1. We take a practical approach to measuring the
length of an arc on this circle. We imagine that we can straighten it out,
and measure how long it is. It requires some work to introduce the idea of
the length of a curve in a mathematically rigorous fashion.

Definition 4.1. The number π is the ratio between the circumference of a
circle and its diameter.

This definition goes back to the Greeks. Stated differently it says, that
the circumference of a circle of radius r is 2πr. Observe that the ratio
referred to in the definition does not depend on the radius of the circle.

Consider an angle α between the positive x-axis and a ray which origi-
nates at the origin of the coordinate system and intersects the unit circle in
the point p. We like to find the radian measure of the angle α. Consider an
arc on the unit circle which starts out at the point (1, 0) and ends at p, and
suppose its length is s. Then

α = ±s (radians).(4.1)

The + sign is used if the arc goes counter clockwise around the circle. The
− sign is used if it proceeds clockwise. We may also consider arcs which
wrap around the circle several times before they end at p. In this sense, the
radian measure of the angle α is not unique, but any two radian measures
of the angle differ by an integer multiple of 2π.

151
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(cos t, sin t)

Figure 4.1: The unit circle

Conversely, let t be any real number. We construct the angle with radian
measure t. Starting at the point (1, 0) we travel the distance |t| along the
unit circle (here |t| denotes the absolute value of t). By convention, we travel
counter clockwise if t is positive and clockwise if t is negative. In this way
we reach a point p on the circle. Let α be the angle between the positive
x-axis and the ray which starts at the origin and intersects the unit circle
in p. This angle has radian measure t.

Comparison of Angles in Degrees and Radians: We suppose that
you are familiar with measuring angles in degrees. The measure of half a
revolution (a straight angle) comprises π radians and 180 degrees. So, one
degree corresponds to π/180 ≈ 0.017453293 radians, and one radian corre-
sponds to 180/π ≈ 57.29577951 degrees. We have the conversion formula

x degrees =
π

180
x radians.(4.2)

Trigonometric Functions: Let t be once more a real number. Starting
at the point (1, 0) we travel the distance |t| along the unit circle, counter
clockwise if t is positive and clockwise if t is negative. In this way we reach
a point p = (x(t), y(t)) on the circle, and we set

x(t) = cos t and y(t) = sin t.(4.3)
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This defines the functions sin t and cos t. You see the construction im-
plemented in Figure 4.1. You can find the graphs of the sine and cosine
functions on the interval [0, 2π] in Figures 4.2 and 4.3.
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-0.5

0.5

1

Figure 4.2: f(x) = sin x
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-0.5
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1

Figure 4.3: f(x) = cos x

The other trigonometric functions, tangent (tan), cotangent (cot), secant
(sec), and cosecant (csc) are defined as follows:

tan x =
sin x

cos x
cot x =

cos x

sin x
sec x =

1
cos x

csc x =
1

sin x
(4.4)

To make sure you have some idea about the behavior of the tangent
and cotangent function we provided two graphs for each of them. They
are drawn over different parts of the domain to show different aspects. See
Figure 4.4 to Figure 4.7. You can see the graphs of the secant and cosecant
functions in Figure 4.8 and 4.9.

A small table with angles given in degrees and radians, as well as the
associated values for the trigonometric functions is given in Table 4.1. If the
functions are not defined at some point, then this is indicated by ‘n/a’. Older
calculus books may still contain tables with the values of the trigonometric
functions, and there are books which were published for the specific purpose
of providing these tables. This is really not necessary anymore because any
scientific calculator gives those values to you with rather good accuracy.

Trigonometric Functions defined at a right triangle: Occasionally
it is more convenient to use a right triangle to define the trigonometric
functions. To do this we return to Figure 4.1. You see a right triangle with
vertices (0, 0), (x, 0) and (x, y). We may use a circle of any radius r. The
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Figure 4.4: tan x on [−π, π]
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Figure 4.5: tan x on [−1.1, 1.1]
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Figure 4.6: cot x on [−π, π]
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Figure 4.7: cot x on [π2 − 1, π
2 + 1]
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Figure 4.8: sec x on [−π, π]
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Figure 4.9: csc x on [−π, π]
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degrees radians sin x cos x tan x cot x sec x csc x

0 0 0 1 0 n/a 1 n/a

30 π/6 1
2

√
3

2

√
3

3

√
3 2

√
3

3 2

45 π/4
√

2
2

√
2

2 1 1
√

2
√

2

60 π/3
√

3
2

1
2

√
3

√
3

3 2 2
√

3
3

90 π/2 1 0 n/a 0 1 n/a

120 2π/3
√

3
2 −1

2 −√3 −
√

3
3 −2 2

√
3

3

135 3π/4
√

2
2 −

√
2

2 −1 −1 −√2
√

2

150 5π/6 1
2 −

√
3

2 −
√

3
3 −√3 −2

√
3

3 2

180 π 0 −1 0 n/a −1 n/a

Table 4.1: Values of Trigonometric Functions

right angle is at the vertex (x, 0) and the hypotenuse has length r. Let α
be the angle at the vertex (0, 0). In the following the words adjacent and
opposing are in relation to α. Then

sin α =
opposing side
hypothenuse

cos α =
adjacent side
hypothenuse

tan α =
opposing side
adjacent side

cot α =
adjacent side
opposing side

sec α =
hypothenuse
adjacent side

csc α =
hypothenuse
opposing side

Trigonometric Identities: There are several important identities for
the trigonometric functions. Some of them you should know, others you
should be aware of, so that you can look them up whenever needed. From
the theorem of Pythagoras and the definitions you obtain

sin2 x + cos2 x = 1, sec2 x = 1 + tan2 x, csc2 x = 1 + cot2 x.(4.5)

The following identities are obtained from elementary geometric observa-
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tions using the unit circle.

sin x = sin(x + 2π) = sin(π − x) = − sin(−x)
cos x = cos(x + 2π) = − cos(π − x) = cos(−x)
cos x = sin(x + π

2 ) = − cos(x + π) = − sin(x + 3π
2 )

sin x = − cos(x + π
2 ) = − sin(x + π) = cos(x + 3π

2 )

You should have seen, or even derived, the following addition formulas in
precalculus.

sin(α + β) = sin α cos β + cos α sin β(4.6)
sin(α− β) = sin α cos β − cos α sin β(4.7)
cos(α + β) = cos α cos β − sinα sin β(4.8)
cos(α− β) = cos α cos β + sinα sin β(4.9)

tan(α + β) =
tan α + tan β

1− tan α tan β
(4.10)

tan(α− β) =
tan α− tan β

1 + tan α tan β
(4.11)

These formulas specialize to the double angle formulas

sin 2α = 2 sin α cos α and cos 2α = cos2 α− sin2 α(4.12)

From the addition formulas we can also obtain

sinα sin β =
1
2

[cos(α− β)− cos(α + β)](4.13)

sinα cos β =
1
2

[sin(α− β) + sin(α + β)](4.14)

cosα cos β =
1
2

[cos(α− β) + cos(α + β)](4.15)

which specialize to the the half-angle formulas

sin2 α =
1
2

[1− cos 2α] and cos2 α =
1
2

[1 + cos 2α](4.16)


